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Abstract—We discuss our experience in optimizing a stencil method
on an Intel Xeon Phi-based cluster. We describe our solutions to
three challenges: tolerating the high cost of inter-node communication,
mapping program parallelism to multi-core and many-core processors,
and balancing workloads on-node across heterogeneous resources. We
present results on TACC’s Stampede system. While details of how to
optimize stencil methods will differ from that of other applications motifs,
the 3 issues we have brought up will apply as well.
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I. INTRODUCTION

At present, it appears that further improvements to High Perfor-
mance Computing (HPC) systems will mainly come from enhance-
ments at the node level [1]. Node architectures are changing rapidly,
and a heterogeneous design that uses a device (i.e. coprocessor
or accelerator) to amplify node performance is gaining traction.
However, heterogeneous nodes complicate application design which
challenge the application programmer. First, performance amplifica-
tion significantly raises communication costs relative to computation.
Thus, we are required to tolerate communication delays [2], [3],
avoid them [4], or both. Second, processor mapping is challenging
due to the heterogeneous design. This task also requires significant
application redesign to (1) work within the limitations of the interface
to the memory subsystems and (2) to use the interface in a way that
utilizes the resources efficiently. Third, the performance differential
between the processors and devices introduces the need to solve a load
balancing problem within the node. This is true even if the application
has no inherent load balancing problem.

In this paper we discuss our experiences in using a directive-
based translator to overcome such challenges on Stampede, a system
employing Intel Xeon Phi coprocessors and Sandy Bridge processors.
We apply our techniques to a 7-point stencil solver, an important
application motif [5]. The starting point for our study is a conventional
MPI+OpenMP code. We transform this code using our custom source-
to-source translator called Bamboo [2]. Bamboo interprets the MPI
API and transforms the MPI input code into an equivalent program
represented by a task precedence graph and running under a data-
driven execution model. The task graph virtualizes the MPI processes,
enabling us to control granularity as needed.

Among the four different MIC execution models currently sup-
ported on Stampede 1, we found that symmetric mode (utilizing both
MIC and Sandy Bridge) always yielded the highest performance.
However, this is the most difficult mode to use due to the three
obstacles outlined above. Thus, in this paper we only show our
experiences in optimizing for symmetric mode, though some of the

1Reverse offload is not yet supported on Stampede

optimizations apply to other modes as well. Experimental results
on up to 32 nodes2 show that our techniques improve performance
by up to 32%. This improvement comes as the result of tolerating
significant communication delays. To facilitate the task of mapping
program parallelism to heterogeneos computing resources, we pro-
pose a rectification strategy for symmetric mode. We demonstrate
experimental results showing that the proposed model can efficiently
employ both types of processing resources, traditional Sandy Bridge
processor and MIC. For our stencil method, it turns out that the
two Sandy Bridge processors deliver nearly identical performance to
the MIC coprocessor. However, this situation may or may not apply
to other hardware configurations or applications. Thus, we built a
variant of the 7-point stencil application that enables the user to adjust
workload imbalance, enabling us to emulate a node where the device
runs the application at a different speed than the host. Our data-driven
formulation of the modified application was able to mitigate the load
imbalance we introduced and also tolerate communication delays,
thereby improving performance on 64 nodes3, varying from 10% to
40% depending on the amount of load imbalance.

The contributions of this paper are as follows.

• A significant performance benefit from using a data-driven
execution model to tolerating communication. Note that
IMPI is unable to mask communication using a split phase
implementation based on asynchronous, non-blocking com-
munication [2], [6], [7].

• A novel execution model based on a reinterpretation of
the MPI process model to easily manage the heterogeneous
parallelism of a hybrid node.

• A simulation that demonstrates that our proposed approach
can also efficiently distribute regular workloads onto hetero-
geneous resources within a node.

II. A CASE STUDY AND EXPERIMENTAL TESTBED

A. Stampede

Stampede, located at the Texas Advanced Computing Center
(TACC), comprises 6400 compute nodes, each equipped with 1 Intel
Xeon Phi XE10P (Knights Corner) coprocessor and 2 Intel Xeon
E5 8-core processors (Sandy Bridge). Each compute node includes
32GB (4 x 8GB DDR3) of host memory (NUMA) and 8GB of on-
board DDR5 device memory. The coprocessor is connected with the
host via a PCIe connection. Nodes communicate via a Mellanox FDR

2At present, symmetric mode is limited to 32 nodes.
3The simulation employs MIC-MIC mode, which is at present limited to

64 nodes.



InfiniBand interconnect with a 2-level fat-tree technology. In order to
employ the MIC processors, we use the Intel C++ Composer XE 2013
suite (version 13.0), which includes the Intel C++ compiler icpp.
We use Intel’s MPI implementation, IMPI.

At the time of this writing, Stampede employs the initial offering
of the MIC architecture, Intel Phi, AKA Knights Corner (KNC).
KNC consists of 61 cores, each an Intel Pentium-like processor (2
pipe in-order superscalar design). Each core includes a 512-bit SIMD
ALU that can perform 8 double-precision floating-point operations
per clock cycle. Processor cores communicate, and access on-chip
DRAM, via a 512-bit wide, bi-directional ring bus and 8 memory
controllers. Each core has 32 KB of private L1 and a partitioned
512KB L2. To hide memory latency, MIC supports up to 4 hardware
threads (AKA contexts) per core. The Intel documentation states that
a minimum of 2 contexts is required to maximize performance.

B. A Jacobi iterative solver using a 7-point stencil

Our motivating application solves the 3D Poisson Equation using
Jacobi iterations and a 7-point stencil. The unoptimized kernel of the
application comprises 4 loop nests as shown in the following code
snippet.

1 / / V , U, and r h s are N x N x N g r i d s
2 f o r s t e p = 1 t o num steps{
3 f o r k = 1 t o N−2 / / Z
4 f o r j = 1 t o N−2 / / Y
5 f o r i = 1 t o N−2 / / X : t h e l e a d i n g d i m e n s i o n
6 V[ k , j , i ]= a l p h a ∗(U[ k−1, j , i ]+U[ k +1 , j , i ]+U[ k , j−1, i ]+U[ k

, j +1 , i ]+U[ k , j , i−1]+U[ k , j , i + 1 ] )−b e t a∗ r h s [ k , j , i ]
7 swap (U,V)
8 }

7-point Jacobi solver is a well-known memory bandwidth bound
application. Although this stencil kernel could be aggressively opti-
mized to become compute bound, we observed that the overall perfor-
mance at scale is strongly limited by the inter-node communication.
As a result, we applied the following optimizations only. We use the
OpenMP collapse clause to parallelize along the Y axis as well as
the Z axis, since parallelizing along the Z axis only is insufficient to
fully harness the available parallelism. To exploit the parallelism on
the leading dimension, we SIMDize the stencil operations along X.
We then apply spatial blocking, dividing the problem into many small
tiles so that the working set of each one fits on cache. We further
restructure the code with a communication avoiding optimization that
unrolls the stencil formula once in the time domain and applies
copy propagation optimization to reduce the demand for memory
bandwidth [8]. The effect is to reduce the number of compulsory
cache misses by a factor of 2, which more than overcomes the added
cost of redundant floating-point operations and more L1 references.

C. Exploring the performance of execution models on Stampede

Stampede supports 5 execution modes4 : host-host, MIC-MIC,
symmetric, offload, and reverse offload. Since reverse offload is
currently unavailable, we will evaluate the first four modes. Host-
host mode executes all computations on the hosts and does not use
the MICs at all. In MIC-MIC mode, the program allocates data and
performs computations locally on MICs. Symmetric mode supports
heterogeneous processing by considering MICs and hosts as peers in
one large SMP (symmetric multiprocessor) node. offload and reverse

4Intel uses different terms for some of these modes, but we will stick to
the conventions described in TACC documentation.

offload mode work on one resource (device or host, respectively)
while migrating computation to the other.
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(a) Performance on 1 node.
Grid size = 256x512x512
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(b) Performance on 16 nodes.
Grid size = 1024x1024x1024

Fig. 1. MPI performance with different execution modes. Symmetric mode
works best, but could be further optimized.

Fig. 1 presents the performance of the 4 execution modes on 1
and 16 Stampede nodes and shows that symmetric mode significantly
outperforms the others. However, we immediately perceive the two
limitations of using symmetric mode naively. First, on 1 node the
performance of symmetric mode is lower than the total performance
on host and MIC. This is because the performance gap between
host and MIC can’t be averaged with a regular distribution. Second,
symmetric mode on 16 nodes only yields 70% of the maximum
GFLOPS that it could realize. This modest efficiency demonstrates
that the communication overhead is already significant at such a small
scale.

D. Transforming MPI code into data-driven form

We use a directive-based solution supported by Bamboo [2]
to overcome limitations of symmetric mode. The code snippet in
Fig. 2 shows how we annotated the 7-point Stencil with 3 prag-
mas (dimension, send, and receive) and an optional olap pragma.
While dimension helps Bamboo generate correct code to virtualize
MPI processes, send and receive pragmas indicate that sending and
receiving ghost cells are independent activities within a process. For
more details of the Bamboo programming model, see [2]. Code
generated by Bamboo is a new program represented as a task graph
that runs under a data-flow like execution model. This program relies
on a task graph library, Tarragon, to define, manage, and execute
task precedence graphs [3], [9]–[11]. The nodes of a TaskGraph
correspond to tasks to be executed. The edges correspond to data
dependencies among tasks. Each MPI process will be effectively
transformed into a set of tasks that are executed by a group of worker
threads. The library supports task execution via one service thread,
including scheduling.

to load balance the workload. Instead, one may want to assign
more work to host to push more communication to the node-
node interconnect, since the host-device connection is slower.
However, we do not apply such irregular distribution in this
paper since it makes the computational workload imbalanced,
and finding a tradeoff between communication balancing and
computation balancing requires further investigations.

C. Code variants

1) Base implementation: synchronous MPI (MPI-sync):
This implementation employs the Bulk Synchronous Paral-
lel (BSP) model [20]. In the BSP model, computation and
communication are performed consecutively and separated by
synchronization (the arrival of communication data). Code
written in BSP is very straightforward, but performance could
be significantly affected due to the lack of latency tolerance. As
a result, we need to hide communication under computation
by using overlap. MPI-sync is the starting point for latency
optimizations that we will be next discussing.

2) Manual split-phase implementation (MPI-async): We
manually restructured the code to employ split-phase coding
to overlap communication with computation. This technique
employs a hierarchical data decomposition, subdividing the
mesh assigned to each core into 2*D equal parts, where D is
the number of dimensions that have more than 1 MPI process.
MPI-asyn sets up a pipeline; within the outer iteration it sweeps
one-half of the sub-problems while communicating ghost cells
for the others. The effectiveness of this technique relies on
the support of MPI in asynchronous data transfer. Specifically,
Isend and Irecv are required to be truly asynchronous rather
than just non-blocking. Said another way, the communication
system of MPI needs to run on an independent thread. As a
result, the performance of this variant would vary with different
MPI implementations.

3) MPI-sync annotated with Bamboo pragmas: Writing
overlap code is never considered as a trivial task even if MPI
supports asynchronous data transfer. The difficult processes
required for writing overlap code and its complex resulted code
will hinder the code development and integration. Furthermore,
the robustness of the overlapping technique is still a question.
Specifically, different systems could provide with different
MPI implementations. Therefore, it is crucial to guarantee that
the technique will work with all implementations.

Bamboo, a source-to-source translator, meets the require-
ments by transforming MPI code into a data-driven form
to automatically overlap communication with computation.
Bamboo requires the programmer to annotate a few pragma
to accurately transform the code into a data-driven form.
The code snippet in Fig. 5 shows how we annotated the 7-
point Jacobi with 3 mandatory pragmas (dimension, send, and
receive) and an optional olap pragma.
1 # pragma bamboo d imens ion 3
2 # pragma bamboo o l a p l a y o u t N e a r e s t Neighbor ( o p t i o n a l )
3 f o r s t e p = 1 t o num steps {
4 # pragma bamboo r e c e i v e
5 { MPI Irecv and unpack a l l messages
6 }
7 # pragma bamboo send
8 { pack d a t a and MPI Isend a l l messages
9 }

10 M P I w a i t a l l
11 S t e n c i l u p d a t e on l o c a l g r i d
12 }

1 # pragma bamboo d imens ion 3
2 # pragma bamboo o l a p l a y o u t N e a r e s t Neighbor ( o p t i o n a l )
3 f o r s t e p = 1 t o num steps {
4 # pragma bamboo r e c e i v e {
5 MPI Irecv and unpack a l l messages
6 }
7 # pragma bamboo send {
8 pack d a t a and MPI Isend a l l messages
9 }

10 M P I w a i t a l l
11 S t e n c i l u p d a t e on l o c a l g r i d
12 }

Fig. 5. 7-point Jacobi annotated with Bamboo pragmas

We configure Tarragon, runtime system targeted by Bam-
boo, as follows. Each MPI process is initialized with
THREAD FUNNELLED mode, meaning that the process will
be multi-threaded but only the main thread can handle commu-
nication by making MPI calls. We then bind the main thread to
core #0 on MIC using sched setaffinity(). Tarragon calls this
main thread the service thread since it is supposed to service
communication requests from computational tasks. We then
create a set of 236 virtual processors and map them to cores #1
to #59 in a block fashion (4 consecutive threads on each core).
We next create a worker thread for Tarragon and bind this
thread to the set of 236 virtual processors. This worker thread
schedules one task at a time by mapping OpenMP threads
spawned in the task to virtual processors. Service and worker
threads run until the program completes. OpenMP threads may
or may not run to completion, depending on the OpenMP
implementation. We do not use core #60 to eliminate noise due
to the microOS of MIC. On host, there are 16 cores indexed
from 0 to 15. As a result, we create 2 MPI processes per
host. We map the service threads of these processes to cores
#0 and #8, and 7 worker threads to cores #1 to #7 and #9 to
#15 respectively. All these setups are totally independent of the
application program whether it is written by hand or generated
by Bamboo. As a result, we factor overlapping policies out of
the application, enhancing performance without complicating
the original algorithm.

D. Weak scaling study

We first conduct a weak scaling study, fixing the problem
size at 256x256x512 per node. Thus, we increase the problem
size in proportional to the number of nodes. To eliminate the
impact of a large leading dimension previously shown in Fig-
ure 2, we fix the size of this dimension at 256 and alternatively
double the sizes of the other two dimensions. As a result, a 2D
decomposition is well suited for this case. These non-cubical
problem sizes are employed in some practical applications. For
example, seismic simulations are often interested in studying
the rupture propagation in a system with fixed depth but varied
area sizes (width and length) [21]. We will show results of a
3D decomposition with cubical problem sizes later in a strong
scaling study.

Figure 6 presents the results of 7-point Jacobi with different
modes on up to 64 nodes. Consider the first 3 subfigures (6(a),
6(b), and 6(c)), we can see that MIC-MIC performs well on
4 nodes but it does not scale as well as the other 2 modes.
This can be explained clearly by looking at Fig. 6(d), where
communication cost in the Host-Host mode is much smaller
than it is in the MIC-MIC mode. The symmetric mode surprises

Fig. 2. Annotating a synchronous MPI variant (MPI-sync) of 7-point stencil
with Bamboo pragmas



III. HIDING INTER-NODE COMMUNICATION

In Fig. 1 we observe that communication is costly and this
motivates the need to mask it. Our first attempt to manually hide
communication fails to improve performance, since unlike other MPI
implementations we have worked with [2], IMPI is unable to realize
overlap. We then compare Bamboo against the original MPI code.

A. Overlapping mechanism under the hood of Bamboo

Since, at this time, IMPI immediate mode calls do not support
asynchronous non-blocking data transfer, we cannot overlap within
the framework of MPI alone. We need to extend the MPI framework
with multithreading support that can realize the overlap we require
[3], [9]–[11]. Bamboo helps us avoid the need to manually restructure
the application to use the framework. The resulting code runs as a
data-driven program that automatically overlaps communication with
computation. The execution of this data-driven code is controlled by
distributed runtime systems (RTS).

Within a node, we configure 2 RTSs on each MIC and 1 RTS
on each Sandy Bridge processor, where RTS is a multithreaded MPI
process. On MIC, we bind the 2 service threads, which take care of
communication, of 2 runtime systems to core #0 and #1 respectively.
For each runtime system, we then create a worker thread and bind it
to a set of 116 virtual processors, which are mapped to cores #2 to
#59 in a cyclic fashion. The configuration of the RTS on each Sandy
Bridge processor is simpler as follows. We dedicate one core for the
service thread and use the rest 7 cores for the worker thread.

B. Experimental evaluation

We first conduct a weak scaling study, fixing the problem size
at 384x384x384 per node. Thus, we increase the problem size in
proportional to the number of nodes. Fig. 3 shows the results of
the 7-point stencil running symmetric mode on up to 32 nodes. The
figure compares the results obtained from Bamboo, by applying it to
a traditional bulk synchronous implementation (MPI-sync) that uses
blocking communication and cannot overlap communication with
computation. Since the problem size is sufficiently large, MPI-sync
realizes good performance and scalability. In this situation, however,
the benefit of Bamboo is still significant: 24% on 16 MICs and 20%
on 32 MICs.
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Fig. 3. Weak scaling study: base problem size = 384x384x384. We increase
the size equally on 3 dimensions, i.e. the problem size on P nodes is
384P 1/3 × 384P 1/3 × 384P 1/3. We perform a 3D decomposition in this
study.

While we use weak scaling to adapt to large problem sizes and
maintain good performance, strong scaling serves as a stress test for
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(a) Strong scaling performance. Problem size =
1024x1024x1024

Fig. 4. Strong scaling study: we test with two cubical problem sizes: 15363

and 10243. Since the leading dimension is large, a 3D decomposition is
required. We observe that performance under strong scaling is generally lower
than under the weak scaling due to increased surface to volume effects.

the performance of an application when communication cost grows.
To this end, we fix the problem size at 10243. Results are shown in
Fig. 4. In this study, Bamboo plays a more significant role in keeping
the application scalable. In particular, MPI sync performs well on 8
nodes. However, this variant slows down on 16 nodes and does not
realize good performance on 32 nodes. Performance is now bound
by communication, so speeding up the computation time by doubling
the number of nodes is offset by the added communication costs.
With Bamboo, the increasing cost of communication can be hidden
as long as the computation is sufficiently significant. Indeed, Bamboo
improves MPI sync by 29% on 16 nodes and 32% on 32 nodes.

IV. A RECTIFIED SYMMETRIC MODE TO MANAGE PROCESSOR

MAPPING AND SCHEDULING

Although hosts and coprocessors coincidentally operate 7-point
stencil at comparable rates on Stampede, this fact can change in
other applications and on different systems, such as Tianhe-2, which
has 3 Intel Phi and 2 Ivy Bridge processors per node [12]. In
this section, we propose a new execution model to rectify the
host-coprocessor discrepancy so that we can continue using regular
distribution effectively on both hosts and coprocessors altogether.

Fig. 5(a) depicts the use of symmetric mode with 2 nodes, where
hosts (H) and MICs (M) serve as SMP nodes. The effectiveness of
this configuration relies on the assumption that hosts and coprocessors
deliver similar performance. However, for reasons stated above, this
assumption may not hold.

Since the imbalance occurs within a single node only we can
avoid the costs of migrating tasks, which is a more challenging
solution to implement. Fig. 5(b) presents a modified version of
symmetric mode. This scheme employs only one MPI process running
on the host to communicate across nodes. Load balancing within node
relies on the virtualization provided by Bamboo and on the dynamic
scheduling supported by its runtime. In particular, Bamboo virtualizes
MPI processes into many smaller homogeneous tasks. The runtime
system employs a single queue per node to handle these tasks. This
queue can be configured as a first-come-first-serve or a priority queue.
Coprocessor and host serve as workers and keep picking tasks until
there is no available task in the queue.

Since the latency between host and coprocessor could be signif-
icant compared to the cost of computation, binding tasks at at run
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Fig. 5. Automatic load balancing in symmetric mode. Virtualization plays a significant role in load balancing regular distributions on heterogeneous processors

time would be crucial to maintain good performance. Specifically,
in the first few iterations, host and coprocessor dynamically take
tasks from the queue to determine a balanced ratio. Tasks are then
bound to host or coprocessor in later iterations to eliminate the
overhead of migrating task’s data. For irregular problems, hints from
the programmer may be useful to perform a optimal task binding or
redistributing.

V. LOAD BALANCING WITH RECTIFIED SYMMETRIC MODE

Implementing rectified symmetric mode requires that the host
and co-processor residing on the same node see a single unified
address space. Implementing such a single address space, either on
hardware or by a software solution, requires siginificant efforts. We
next present our first step in demonstrating the proposed scheme via
a simulation using coprocessors only, which enables us to avoid the
thorny implementation issues in supporting the single address space,
while demonstrating the utility of the approach.

To simulate the unified address space between host and copro-
cessor, we extract 1/4 number of cores on each coprocessor to use
as host. As a result, each simulated coprocessor consists of 3-time
cores more than its simulated host, a reasonable fraction to distinguish
multi- and many-core processors. To simulate the fact that each core
of the simulated host is faster than each core of the coprocessor,
we dynamically add dummy computations to tasks at the time they
are scheduled on the simulated coprocessors. We configure Tarragon
with 4 worker threads, each spawning 60 OpenMP threads. We use
the notion slowdown factor σ to denote how slower a worker thread
on coprocessor is compared to that on the host. If σ = 1, all worker
threads run with the same rate, meaning that coprocessor is 3-time
faster than host. If σ = 6, then the coprocessor runs at only 3*(1/6)=
1/2 of the host’s rate.

Fig. 6(a) presents the task distribution on worker threads of
simulated hosts and coprocessors when the σ varies. We select values
for σ so that the coprocessor can be slower or faster than its host.
We can see that when σ = 6, the host’s worker thread is very
fast compared to those of the coprocessor. In such a scenario, the
scheduler dynamically assigns more tasks to the host’s worker thread,
thereby balancing the workload to maintain good performance. It
is important to note that the task scheduling is purely driven by
workload and the slowdown factor, and there is no intervention from
the programmer. We also observe that the task distribution results
shown in Fig. 6(a) hold for both single and multi-node configuration.

Fig. 6(b) demonstrates that latency hiding does not negatively
impact load balance, but rather works in synergy with load balancing

activity to improve performance. In particular, when σ = 1, entire
performance benefit is due to latency hiding. With higher values of σ
the load balancing scheme contributes additional benefit, increasing
the amount of performance improvement. In this study, we also see
the vital role of virtualization in both hiding latency and balancing
the workload. The degree of virtualization is denoted by virtualization
factor (VF), the total number of tasks divided by the total number
of worker threads. Fig. 6(b) shows that a virtualization factor of 2
is sufficient when the discrepancy between worker threads is not
significant. However, when the host’s worker thread becomes much
faster, a virtualization factor of 4 is required. This makes sense since
we need more tasks to fill the larger performance gap among worker
threads.

VI. RELATED WORK

Overlapping communication and computation is a popular tech-
nique to hide communication overheads, with a long history [3], [9]–
[11], [13]–[22]. However, writing code to achieve overlap is not a
trivial process, and this task is even more challenging without proper
support from MPI implementations. For example, Witmann et al.
noted a significant impact of communication on the performance
of a 3D stencil solver on up to 64 nodes of Xeon 5550 processors
[6]. However, the authors did not apply any optimization to overlap
communication with computation since the Intel MPI implementation
(IMPI) that they used did not support asynchronous non-blocking
primitives.

Bamboo virtualizes MPI processes into tasks and uses static anal-
ysis to extract information embedded in communication primitives to
generate a dynamic firing rule. Virtualized tasks then execute under
a data-driven execution model provided by Tarragon [9], [10], [22],
i.e. running and waiting upon the arrival of data and the firing rule
generated by Bamboo. MPI/SMPSs [23] also employs a source-to-
source translator and pragma annotations to realize task parallelism
using SMPSs [24]. Under MPI/SMPSs programmers taskify MPI calls
that may then run in parallel with computation, adding additional
burden on the programmer. Similar to Tarragon, SMPSs separates
communication from task computations. As a result MPI/SMPSs
also supports asynchronous transfer and communication-computation
overlap. Danalis et al. [25] implemented transformations that real-
ize communication-computation overlap in MPI collectives. β-MPI
[26] generates the runtime dataflow graph of an MPI program, in
order to assess communication volume. It overloads the MPI calls
using macros, but does not perform source code analysis or code
restructuring. Adaptive MPI [27], built on top of Charm++ [28]
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supports communication overlap by virtualizing MPI processes, but
but performs no translation.

VII. CONCLUSION

The current trends in node architecture pose a challenge to both
application development and maintenance. We have shown that even
at a small scale, an accelerator based platform significantly increases
communication overheads, and we have proposed a means of miti-
gating these overheads in stencil methods. We have also shown that
employing both host and coprocessor can significantly improve the
performance. The use of this approach, however, is complicated due
to the heterogeneity of the host-coprocessor communication structure.
We proposed a novel execution model based on task virtualization
and dynamic scheduling to load balance computations within each
node. This solution not only solves the load balancing problem but
also hides communication delays. Nevertheless, future hybrid systems
will require vastly improved interconnect in order to operate at scale.
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