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ABSTRACT

In the current practice, scientific programmer and HPC users are
required to develop code that exposes a high degree of parallelism,
exhibits high locality, dynamically adapts to the available resources,
and hides communication latency.

Hiding communication latency is crucial to realize the potential of
today’s distributed memory machines with highly parallel process-
ing modules, and technological trends indicate that communication
latencies will continue to be an issue as the performance gap be-
tween computation and communication widens. However, under
Bulk Synchronous Parallel models, the predominant paradigm in
scientific computing, scheduling is embedded into the application
code. All the phases of a computation are defined and laid out as
a linear sequence of operations limiting overlap and the program’s
ability to adapt to communication delays.

In this paper we present an alternative model, called Tarragon, to
overcome the limitations of Bulk Synchronous Parallelism. Tar-
ragon, which is based on dataflow, targets latency tolerant scientific
computations. Tarragon supports a task-dependency graph abstrac-
tion in which tasks, the basic unit of computation, are organized as
a graph according to their data dependencies, i.e. task precedence.
In addition to the task graph, Tarragon supports metadata abstrac-
tions, annotations to the task graph, to express locality information
and scheduling policies to improve performance.

Tarragon’s functionality and underlying programming methodol-
ogy are demonstrated on three classes of computations used in sci-
entific domains: structured grids, sparse linear algebra, and dy-
namic programming. In the application studies, Tarragon imple-
mentations achieve high performance, in many cases exceeding the
performance of equivalent latency-tolerant, hard coded MPI imple-
mentations.

1. INTRODUCTION

In supercomputing systems, architectural changes that increase com-
putational power are often reflected in the programming model. As
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aresult, in order to realize and sustain the potential performance of
such systems, it is necessary in practice to deal with architectural
details and explicitly manage the resources to an increasing extent.

Hiding communication latency is crucial to realize the potential of
today’s distributed memory machines with highly parallel process-
ing modules. While the number of cores per processor contin-
ues to increase, specialized processors (often called accelerators)
are becoming a common attribute of high performance computing
systems'. High core counts and accelerators contribute to an in-
crease in the relative performance gap between computation rate
and data transfer rate. In addition, the finer granularity required
to leverage the parallelism in hardware makes application perfor-
mance very sensitive to data transfer latency, a slowly improving
hardware characteristic [19]. However, parallel programming mod-
els still lack high level abstractions for hiding communication la-
tencies.

In the classical Bulk Synchronous Parallel (BSP) programming mo-
del, the dominant model in parallel scientific applications [17], pro-
cesses execute in parallel operating on a partition of the data and
alternating a computation phase with a synchronous communica-
tion phase. The underlying parallel computer is a set of processors
with local memory connected by a router. BSP has been labeled a
bridging model to emphasize the intent of defining a unified model
driving both software and hardware design. In fact, BSP captures
the essence of both distributed memory machines and data-parallel
algorithms. Among others, the Message Passing Interface (MPI)
and Unified Parallel C (UPC), two well known parallel program-
ming models, are intrinsically BSP models.

While characterized by different design and implementation choices,
all BSP models preserve the same computation structure with a
communication phase that is part of the control-flow and that lies
on the critical path. Despite numerous research efforts [3,5,9,24],
in BSP models there is no widely adopted solution to hide latency
other than to manually develop split-phase communication code.
The idea of split-phase communication is simple: initiate the com-
munication as soon as possible (first part of the communication
phase) and wait for completion only when required by the im-
plicit data dependencies (second part of the communication phase).
Though simple as an idea, split-phase communication requires con-
siderable programming effort because it involves extensive code re-
structuring. In addition, the restructured code may exhibit a locality

!Including the system ranked first, four of the 10 most powerful
systems in the world according to the Top500 project use accelera-
tors [27]



oblivious memory access pattern.

Data-driven programming models, like dataflow and actors, show
promise as a way to expose a high degree of parallelism and auto-
matically achieve overlap. In fact, the ability to achieve overlap in
data-driven algorithmic formulations has been demonstrated in ad-
hoc implementations of linear algebra kernels [11]. However, cur-
rent data-driven programming models fail to expose and express the
underlying communication pattern and do not present users with
high level abstractions that support latency-hiding algorithms.

Large-grain dataflow languages gained traction recently as multi-
core architectures pervaded computer architectures. Cilk, for ex-
ample, is a multithreaded language for task-parallelism [23]. In-
ternally, Cilk activates tasks by maintaining a dependency graph.
However, Cilk is intended for shared-memory architectures and
does not support performance optimizations. In particular, Cilk is
locality oblivious and does not enable overlap of communication
with computation. Similarly, StarSS is a directive-based model for
task parallelism on shared memory architecture, but does not ad-
dress and distributed memory architecture and communication cost
optimizations [21].

Charm++ is an object oriented parallel language that implements
an actors model [15]. In Charm++ actors are special objects, called

chares, with entry methods supporting Asynchronous Remote Method

Invocation. Entries are like communication primitives: when an
entry is invoked, the underlying run-time system creates a message
that is sent to the destination chare. In Charm++ execution is vir-
tualized [16] in the sense that chares execute like virtual processes
managed by the underlying run-time system. The run-time system
also manages communication and it can overlap communication
with computation. However, the dataflow structure is embedded in
the control flow and it is unveiled only during program execution.

We present Tarragon, a dataflow programming model for latency-
tolerant scientific computations [20]. Tarragon supports a task-
dependency graph abstraction in which tasks, the basic unit of com-
putation, are organized as a graph according to their data depen-
dencies. Tasks communicate by transferring data along the edges
of the graph and the underlying run-time system manages dataflow
execution semantics and data motion. In addition to the task graph,
Tarragon uses metadata abstractions to express locality information
and scheduling policies.

We applied Tarragon to three classes of computations used in scien-
tific domains: structured grids, sparse linear algebra, and dynamic
programming [7, 8]. For each of the above classes, we present the
implementation of an application using Tarragon, a performance
study for the application, and a comparison to an equivalent hand-
coded latency-tolerant MPI implementation.

2. PROGRAMMING MODEL

2.1 Overview

Tarragon is based on a dataflow abstraction. The abstraction hides
most of hardware and software low-level details while it requires
programmers to decompose the problem into tasks and express de-
pendencies between the tasks. Exposing parallelism is still the pro-
grammer’s duty, as in most widely adopted programming models,
although parallel execution and concurrency are implicit and their
control transparent to the programmer.

Tarragon’s programming model is a coarse-grain dataflow model.

In classical dataflow models a program implicitly defines a graph
in which nodes are instructions and edges connect nodes such that
the result of an instruction becomes an operand of another instruc-
tion [6, 12—14]. The firing rule is straightforward: an instruction
executes when all its operands are available. Data is transferred
along the edges, rather than stored in memory, and there is no
program counter as the graph execution manages control flow. In
Tarragon the nodes of the graph are coarse-grained objects, called
tasks. Tasks of arbitrary complexity can be defined and can pre-
serve their state across executions. The firing rule is user-defined
and the data is stored in memory. The edges carry data in the form
of messages.

2.2 Execution Model

Tarragon’s programming model executes under a three-layer con-
trol structure. The three levels in Tarragon are the task level, the
graph level, and the control level. The task level represents the in-
structions within a task. The graph level controls task execution
according to dataflow semantics. Finally, the control level controls
the graph abstractions and is responsible for creating and executing
graphs.

The control level initializes Tarragon’s run-time system (RTS), cre-
ates a graph, and launches the graph’s execution. The RTS supports
the graph level of execution. Once the tasks of the graph are defined
and connected, execution is transparently carried out by the RTS,
which manages task scheduling and data motion, orchestrating the
dataflow abstraction. At the graph level, the order in which tasks
are executed is constrained by dependencies, but among partially
ordered tasks?, the exact ordering is determined by Tarragon’s RTS.
As dependencies are satisfied, tasks become ready to execute and
eventually they are executed by the RTS. When multiple tasks are
ready for execution, they run in parallel as available resources al-
low. Finally, at the task level, tasks execute as virtual processes,
unaware of the underlying levels. A task becomes ready to exe-
cute when its firing rule is satisfied. Once a task begins executing,
it runs to completion. It cannot be preempted and it cannot wait
for communication events. These conditions simplify the task code
which can be designed as a self-contained sequential program, free
of scheduling and concurrency concerns.

Users define the core of the computation within a task, specifying
firing rules and the operations that a tasks carries out. A task is
therefore characterized by its virtual methods and that the applica-
tion programmer extends to define a concrete task subclass.

The state of a task regulates the interaction with the RTS. A task is
a state machine whose transitions are triggered by method invoca-
tion. The RTS inspects the state attribute, encoding the observable
state of the task, and invokes initialization and execution accord-
ingly. Figure 1 illustrates the states of task, the transitions between
states, and the corresponding methods causing the transitions.

2.3 Communication Model

In Tarragon, communication between tasks is expressed and en-
abled by connecting tasks with directed edges. During graph exe-
cution, tasks can move data along the edges of the graph. The graph
is an explicit representation of the communication pattern.

2A partial order on a set defines an ordering on the elements al-
though not all the elements of the set are comparable; that is, the
order relation is not defined on all the pairs of elements.
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Figure 1: States and transitions. The lines denote state tran-
sitions between the possible states of a Task. The labels de-
note the method causing the transition. Notably, ERROR and
DONE are reachable from all the other states and are final
states.

Communication is one-sided in the sense that the destination task is
not actively involved in the communication. As with Active Mes-
sages [25], data arrival triggers a handler function execution. The
handler injects data into the task and triggers task readiness accord-
ing to the firing rule that it encodes. Since sending data is an asyn-
chronous operation and there is no receive operation, a task never
blocks on communication and it is therefore guaranteed that, when
executing, tasks are actively computing. In this way processor vir-
tualization is implemented without preemption yet it is guaranteed
that cores are utilized efficiently.

3. APPLICATIONS

3.1 Jacobi Iterative Solver

The first model computation considered is an iterative solver for the
Poisson’s equation in a three-dimensional domain with Dirichlet
boundary conditions. Poisson’s equation, as shown in Equation (1),
is a PDE that expresses a potential function, here denoted by u, in
terms of a known source function, here denoted by v, on an open
region Q € R3. The value of the potential on the boundary is given
by a known function f.

Au=vinQ
{ (D

u=fondQ

The solver implements Jacobi’s method. The space is discretized
and represented by a Cartesian grid (uniform spacing with distance
h between consecutive points is assumed) and two copies of the
grid are stored to support out-of-place updates. Then, a centered 7-
point finite-difference stencil is applied to each grid point in order
to produce a new approximate solution in each iteration:

In SPMD formulations the grids are partitioned and the partitions
mapped each one to a different process. In addition to the boundary
values, additional grid points are necessary for the calculations on
the internal boundaries. Such additional points, usually referred
to as ghost cells, are copies of points that belong to neighboring
processes. The values of ghost cells is refreshed between iterations.

Four different variants are examined and compared in the remain-

der of this Section: Synchronous, Asynchronous, BGraph, and Graph.

The Synchronous variant is an MPI encoding. Each MPI pro-

cess owns a partition of the grid and is responsible for the up-
dates. Ghost cells are exchanged by using non-blocking commu-
nication primitives, to improve communication efficiency, but pro-
cesses synchronize on communication waiting immediately for com-
pletion.

The Asynchronous variant is a split-phase reformulation of the Syn-
chronous variant. In addition to using non-blocking primitives, the
computation is split in two phases: one to compute points in the
inside of the local grid, and one to compute points on the surface,
which are the points whose new values depend on the ghost cells.
Communication is initiated as before, but there is no immediate
wait; rather, the relaxation of the inner points is done first. Then,
processes wait for communication to complete. Finally, the points
on the surface of the local grid are updated using the ghost cells
received. Updating the surface takes 6 additional groups of loops
(only two nesting levels this time) to update the points on each face.

The Graph and BGraph variants are implemented with Tarragon. In
both variants, tasks are the equivalent of processes in the MPI mod-
els with the difference that, in the ideal decomposition, the number
of tasks exceeds the number of processor cores (over-decomposition).
In addition, tasks do not wait on communication and Tarragon man-
ages execution and communication according to the semantic of
the graph. The algorithms are fundamentally asynchronous and
differ from each other because BGraph, as well as the MPI vari-
ants, implements cache blocking. Consequently, BGraph uses a
lower number of tasks and still achieve high locality whereas Graph
does not employ explicit cache blocking and simply relies on over-
decomposition to achieve the same effect. In addition, since a rel-
atively small number of local tasks means a smaller number of in-
ternal tasks, BGraph uses a rectilinear blocking schema that allows
for blocks with different sizes. With this schema, tasks with off-
node edges are associated to smaller blocks to ensure that enough
computation is left to be overlapped to communication.

With over-decomposition, mapping can be seen as a coarser level of
blocking. From this perspective, a mapping is a partition of the set
of tasks where each partition represents a process. To reduce off-
node communication and to equally distribute the tasks, BGraph
and Graph use a regular three-dimensional blocking schema to map
tasks to nodes. The graph is completed by connecting tasks along
the Manhattan directions.

3.1.1 Performance Evaluation

Weak scalability reproduces the scenario where users employ a
larger set of resources to solve a larger instance of the problem or,
as is often the case in scientific computing, solve the same problem
at a higher resolution. The first set of experiments conducted on
Abe is a weak scaling study to compare the four implementations.
The measure of comparison is the achieved GFLOPS rate.

As shown in Table 1, the problem size ranges from 5123 to 30723
running on 8 to 2048 cores, respectively. These configurations
maintain approximately 16M points per core and complete 50 it-
erations in approximately 30 seconds. From the table it can be
observed how the Asynchronous variant suffers degraded perfor-
mance as a result of the poor locality of split-phase coding. It can
also be observed that in all the configurations tested, the two Graph
variants perform better than the Synchronous version. The speedup
enjoyed is the result of the reduced communication cost that lies
on the critical path. In fact, the speedup achieved (the seventh col-
umn reports the speedup of Graph versus Synch) is proportional to



Table 1: Weak scaling on Abe. The Table shows the performance, measured in GFLOPS, of the four variants: Synchronous (S),
Asynchronous (A), BGraph (BG), and Graph (G). The Table also shows the percentage of time spent communicating in Synchronous
(Comm), the speedup of Graph over Synchronous (S/G), and the percentage of the communication time that is hidden in Graph

(Hidden).
Problem Size | Cores | S [Comm [ A [ BG | G | S/G | Hidden
5123 8 1.5 7% 14 1.6 1.6 | 1.06 74%
6403 16 3.1 4% 2.9 32 32 | 1.04 93%
800° 32 6.0 7% 5.7 6.2 6.3 | 1.05 74%
1000° 64 11.6 7% 11.3 12.4 12.5 | 1.08 98%
1200° 128 | 23.6 8% | 224 | 240 | 249 | 1.06 64%
1680° 256 | 473 6% | 457 | 49.7 | 49.8 | 1.05 83%
2000° 512 | 934 7% | 902 | 992 | 993 | 1.06 87%
24323 1024 | 185.7 9% | 175.0 | 197.8 | 197.6 | 1.06 68%
30723 | 2048 | 372.5 8% | 364.7 | 390.7 | 394.6 | 1.06 70%
45 ; 15
Table 2: Strong scaling on Abe. Performance, measured in T aeonous
GFLOPS, of the four variants: Synchronous (S), Asynchronous —&— Communication
(A), and Graph (G), with the percentage of total running time R
spent communicating in Synchronous (Comm), the speedup of s 0§
Graph over Synchronous (S/G), and the percentage of the com- g E
munication time that is hidden in Graph (Hidden). 2 H
Cores| S [Comm| A | G | S/G | Hidden 3
256 | 413 ] 9% [ 456 497 [105] 57% i eE
512 | 9338 9% 832 | 994 | 1.06 63%
1024 | 174.8 15% | 127.4 | 197.2 | 1.12 78%
2048 | 312.8 23% | 266.8 | 391.9 | 1.25 86% . X

the communication cost (the cost of communication is measured on
the Synchronous version by shutting off communication). Finally,
BGraph and Graph achieve similar performance proving that, in
this case, over-decomposition increases locality and obviates the
need for cache blocking optimizations.

Strong scaling experiments show that this is the case. Table 2
gives the detailed results, including the performance of BGraph,
for a 16003 problem on 256, 512, 1024, and 2048 cores. For Syn-
chronous, when the number of cores increases the gap between
ideal and measured performance increases as well as, whereas the
curve of Graph stays close to the ideal curve. Finally, Graph achieves
a 1.25 speedup on 2048 in comparison to Synchronous.

The third set of experiments explores Tarragon’s ability to tolerate
increasingly higher communication latencies. In these experiments
latencies are artificially increased by increasing the amount of data
sent when exchanging ghost cells. Figure 2 illustrates a comparison
between Synchronous and Graph solving a 10003 problem on 64
cores. It can be observed how the timings of Synchronous (blue
line) exhibits the same behavior of the communication cost (red
line) whereas the timing of Graph (green line) increases gracefully
and at a much lower rate.

3.2 Needleman-Wunsch

In computational molecular biology, comparing sequences (e.g. DNA)

is a fundamental primitive operation and it is at the basis of more
complex manipulations and analysis [4]. The comparison between
two sequences can provide a measure of how similar the sequences
are, for example by quantifying the minimum number of transfor-
mations to make the sequences equal. Similarly, it is useful to
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Figure 2: Effect of increased communication cost in Jacobi
solver.

stretch the sequences by inserting special characters in order to
maximize the number of matching characters. Tools that solve this
type of problems are used in DNA sequences manipulations, such
as fragments assembly, and analysis, such as database searches
based on similarity.

Needleman-Wunsch is based on the computation of the edit ma-
trix for the given input sequences, which are usually referred to as
reference and query. Rows and columns are associated to the char-
acters of the query and the reference, respectively, and each entry
of the edit matrix is the score of the alignment between the corre-
sponding prefixes of the sequences. At the end of the computation,
the bottom-right corner holds the score of the complete alignment.

Scores are assigned according to a scoring function ¥ X ¥ :— Z
and a recurrence relation. The scoring function assigns scores to
matches and mismatches whereas the penalty associated with the
insertion of a gap (_), where a gap represents simple genetic mu-
tations causing insertion or deletion of a base, is accounted for by
the recurrence relation. The recurrence relation defines how scores
are assigned when prefixes are extended. Implicitly, the recurrence
relation defines the dependencies between entries.

Needleman-Wunsch has two phases: the first phase computes the
edit matrix; the second phase traverses the edit matrix along the
path that corresponds to the optimal alignment. The computational
complexity of the first phase is O(mn), where m and n are the length
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Figure 3: Needleman-Wunsch alignment. Figure 3a shows the
wavefront execution on a matrix decomposed into 16 blocks,
the arrows represent the dependencies between blocks. Striped
block have been filled alreadys; tiled blocks are ready for execu-
tion and can execute concurrently, that is the wavefront; white
blocks cannot be computed yet. Figure 3b shows the wavefront
after the completion of the second diagonal and the mapping to
two processes. At this time the processes form a communication
ring. The ring is represented on the right of the matrix.

of the two sequences, assuming that filling each entry of the matrix
has constant cost. The assumption holds for the class of scoring
functions considered in this dissertation. Finding the path has linear
complexity because it traverses the matrix from the bottom-right
corner to the top-left corner, and each step is either a move up or a
move to the left and has constant cost. It follows that the first phase
accounts for the majority of the computation time. For this reason,
only the first phase is considered.

The parallel algorithm here considered is a wave-front algorithm,
as illustrated in Figure 3. Four implementations are compared in
the remainder of this section: a Synchronous MPI implementation,
an Asynchronous MPI implementation, and two Tarragon imple-
mentations. The different codes are referred to as Synchronous,
Asynchronous, Block, and Panel. The description of each imple-
mentation follows.

In Synchronous, blocks are assigned to processes using a 1- dimen-
sional cyclic mapping along the columns and each process com-
putes the blocks owned, row by row, left to right. Communication
takes place after each process completes a block. After completing
a block, processes send the bottom of the computed block form-
ing a communication ring (Fig. 3b). The ring is implemented using
blocking communication primitives and the exchange is done in
two phases: first even-rank processes send and odd-rank processes
receive, then even-rank processes receive and odd-rank processes
send.

Asynchronous implements the communication phase differently.
In Asynchronous processes maintain a communication schedule
and post non-blocking receives in advance. Then, as the compu-
tation advances, processes follow the communication schedule re-
tiring completed receives and posting new ones. To this end, Asyn-
chronous tracks the window of pending receives using a circular
queue. Similarly, sends are posted as soon as possible but retired
only later, as the window of pending sends slides forward.

In Block each block is associated with a task. Tasks execute after
receiving a message from the task on the left, and the task from the
top. The two messages provide data on the leftmost column of the
block and the first row, and therefore provide all the necessary data
to compute the associated block. When executing, the task fills the

associated block of the edit matrix. Finally, the task terminates by
sending the last row and the rightmost column to the task below
and the task on the right. In fact, the graph can be obtained by
the blocked representation of the matrix and the corresponding de-
pendencies, with the exception that there is no diagonal edge. The
diagonal dependency is implied by the vertical edge.

In Panel a whole block row is associated with a task. Because
each block in a row can execute only after the preceding block,
the amount of parallelism is not reduced. The computation is iden-
tically pipelined. However, the size of the graph is reduced and so
the memory utilized to store the graph. In addition, the RTS has
to keep track of a much smaller set of tasks and can therefore be
more responsive in handling communication events. Within a task
the computation and the communication granularity is not different.
Task compute a block at a time and as soon as a block is completed,
data is sent on the outgoing edge. In this way the granularity of the
tasks is coarsened, while the granularity of the computation and,
very importantly, the granularity of the phases of the pipeline are
not.

3.2.1 Performance Evaluation

The first experiments on the Intel cluster compare the four imple-
mentation on 2 and on 8 cores. In addition, Block and Panel are
tested in two different configurations. The two configurations are
single threaded and multi threaded. The relevance of the single-
thread version is that since the computation is CPU bound, assign-
ing one core to the service thread might cause a significant perfor-
mance loss. It is therefore important to assess the performance loss
and identify the optimal node configuration for small scale runs.
By doing so it is also possible to observe whether the optimal con-
figuration changes at large scale.

Length | Cores | Synch | Asynch | TBI | TP1 | TPM
217 8 10.9 10.8 100 | 103 | 114
218 32 11.5 112 102 | 106 | 11.8"
219 128 11.9 11.5 106 | 11.3 | 1257
2%0 512 15.6 132 | 1227 | 126 | 13.7°
221 2048 | 14.3 146 | 1527 | 159" | 1447

Table 3: Running times on the Intel cluster (Abe@NCSA). TB1
is Block running single threaded. TP1 is Panel running single
threaded. TPM is Panel running multi threaded. Timings are
given in seconds. The table presents weak-scaling run times in
comparing two sequences of equal length, as reported in the
first column.

Scaling up to 512 cores, the single-thread configurations are still
faster than the MPI implementations. However, on 2048 cores the
cost of managing asynchronous communication requests suddenly
increases and affects all the codes using non-blocking communi-
cation primitives, especially the single-thread configurations. The
same is true also for Asynchronous and in fact, Synchronous is
the fastest indicating that a performance bottleneck in the underly-
ing communication layer is affecting the non-blocking primitives.
Panel running multi threaded achieves similar performance (less
than 0.7% difference in running time) showing that as the core
count increases, and so does the communication cost, the multi-
thread configuration becomes viable again.

Finally, the computation proceeds in a pipelined fashion. Each core
executes one stage of the pipeline. In order to minimize idle times



the pipeline must be kept full at all times. In the MPI implemen-
tations the pipeline is implicitly defined as part of the hard coded
schedule. The schedule is optimal and executes first the tasks with
highest number of descendants in the graph. In Tarragon tasks are
scheduled dynamically without any predefined order. To ensure
that progress is made while maintaining a pool of available tasks,
tasks are prioritized giving higher priority to the tasks closer to the
top of the matrix. On the other hand tasks with low priority can
execute when all the high priority tasks are blocked. The result
is that Tarragon is able to follow a theoretically optimal schedule
expressed by priorities and to adapt to communication delays by
executing low priority tasks instead of waiting.

Table 4 shows the difference between the implementations with and
without prioritized execution. In some cases prioritized execution
is crucial to achieve high performance. Especially for Panel, where
the lower number of tasks reduces the flexibility in scheduling, pri-
oritized execution prevents lower priority panels to execute for a
long time and to stall the pipeline. The negative effect of stalling
is even more evident as the number of cores increases. The more
cores there are, the longer it takes to completely fill the pipeline
after stalling. The result is that prioritized execution accounts for
a reduction in run time of approximately 20% on 512 and 2048
cores. Single threaded Panel is the least affected because it has
less opportunities to alternate between execution and scheduling
and naturally follows the order in which tasks are enabled. The or-
der corresponds to the prioritized order since panels are enabled in
descending order, starting from the first row.

3.3 Sparse LU Factorization

LU factorization is employed in direct solvers of systems of lin-
ear equations. In such solvers, given a linear system of the form
Ax = b, first A is factorized, via some variant of Gaussian Elimina-
tion, into two matrices which are a lower and an upper triangular
matrix (L and U); then, the resulting triangular systems, Ly = b and
Ux =y, are solved by means of forward and backward substitution,
respectively. The result of the latter solve gives the solution to the
system Ax = b.

To take advantage of cache locality and of highly-tuned single-core
dense linear algebra libraries, factorization algorithms are imple-
mented using blocking. With blocking, the algorithm is expressed
in terms of submatrices of contiguous rows and columns rather than
individual rows and columns, and operations between submatrices
are executed by invoking dense linear algebra routines. In parallel
formulations, blocking also results in more efficient communica-
tion because it increases messages length while decreasing their
number than for un-blocked algorithms. Consequently, the avail-
able bandwidth is used more efficiently and the total communica-
tion cost is reduced.

As reference MPI implementation, we used the SuperLU_DIST
software package [28]. The solver in SuperLU_DIST is a dis-
tributed memory sparse direct solver for general systems of equa-
tions>. The solver is characterized by a symbolic factorization
phase in support of a static pivoting strategy [18]; during the sym-
bolic factorization the matrix is transformed to ensure stability and
to preserve sparsity. SuperLU_DIST also employs software pipelin-
ing to overlap communication with computation.

3Systems of equations characterized by a positive-definite matrix
can be solved more efficiently using Cholesky factorization.

The Tarragon implementation of factorization is embedded in Su-
perLU_DIST and replaces the original factorization based on MPI.
The Tarragon implementation effects a compromise between creat-
ing a large number of small tasks and maintaining the coarse granu-
larity of the original formulation. Creating a large number of small
tasks would be ideal for exposing a high degree of parallelism.
However, preserving interoperability with other SuperLU_DIST rou-
tines introduces limitations on the design choices in the Tarragon
implementation. For example, due to permutations performed in
the symbolic factorization phase, rows of L are stored out of order,
and the order differs within each block column. In addition, blocks
of U are stored as columns of different size. As a result, factoriza-
tion involves searches and data formatting operations before dense
linear algebra routines can be used. Such operations would be du-
plicated in a fine grained task-parallel implementation causing high
computational overheads. The approach adopted in the Tarragon
factorization algorithm is conservative in that it is task-parallel, but
the tasks defined match the granularity of the phases of the MPI
implementation.

There are also limitations on the way factorization can be executed
in the Tarragon implementation. The SuperLU_DIST design as-
sumes an underlying SPMD execution model (MPI) and it uses a
block-cyclic mapping of blocks to processes. With Tarragon, when
a single multi-threaded run-time system is deployed on each node,
a block-cyclic distribution maps consecutive blocks on different
nodes causing a significant increase in inter-node communication.
For this reason, the Tarragon implementation runs more efficiently
if it follows the same process mapping of SuperLU_DIST, though
this prevents the run-time system from transferring data via shared-
memory and the available parallelism is limited. In addition, while
the data structures used in SuperLU_DIST are stored in buffers
ready for communication with MPI, in Tarragon such data struc-
tures are also be integrated with a message header requiring extra
memory copies.

3.3.1 Performance Evaluation

The test suite used for the experiments is composed of twelve ma-
trices from real world science and engineering problems. Eight
matrices are taken from the University of Florida Sparse Matrix
Collection [10,26], two from a fusion energy study [1], one from
an accelerator structural design problem [2], and one is a dense
matrix. The matrices were selected with different sizes, number of
nonzeros, sparsity, and sparsity pattern to ensure that performance
is evaluated under different conditions. In particular, the dense ma-
trix generated for this study is used to create a balanced workload
distribution in the attempt to isolate communication delays due to
data transfer from delays due to load imbalance.

For most of the small matrices, the peak performance (timing in
boldface) is achieved on a small number of cores due to load im-
balance and the little available parallelism. However, in many cases
the Tarragon implementation achieves its peak on a larger number
of cores. However, the Tarragon implementation is less efficient in
some cases in which, on an equal number of nodes, it is slower than
the SuperLU_DIST implementation. Overall, on the small matri-
ces, the Tarragon implementation achieves a 1.09 average speedup
over the SuperLU_DIST implementation.

On two of the large matrices, the Tarragon implementation out-
performs the SuperLU_DIST implementation. However, on matrix
matrix181, the Tarragon implementation does not improve its per-
formance when scaling from 256 cores to 512 cores, whereas the



Cores | TB1 | TB1+ [ sp(%) | TP1 | TP1+ [ sp(%) | TPM | TPM+ | sp(%)
8 10.0 10.0 0 10.3 10.3 0 11.4 11.4 0
32 10.2 10.2 0 10.6 | 10.6 0 12.1 11.8 3
128 10.6 10.6 0 11.3 11.3 0 13.3 12.5 6
512 13.0 12.2 7 12.6 12.6 0 17.3 13.7 26

2048 | 17.1 15.2 13 16.3 159 3 17.6 144 22

Table 4: Running times on the Intel cluster (Abe @NCSA). TB1 is Block running single threaded. TP1 is Panel running single
threaded. TPM is Panel running multi threaded. Timings are given in seconds. The table presents weak-scaling run times in
comparing two sequences of equal length, as reported in the first column.

Table 5: Comparison of peak performance on Abe. The table
compares the peak performance that the two implementations
achieve in the LU factorization, and gives the speedup achieved
with Tarragon (column sp).

. SuperLU Tarragon
Matrix GFLOF?S | Cores GFLOPSg| Cores Sp
bbmat 12.6 16 14.4 16 | 1.14
g7jac200 12.2 16 14.3 32 | 1.17
inv-extr-1 7.7 16 8.6 16 | 1.10
matrix31 11.3 8 12.7 16 | 1.13
mixing-tank 15.2 16 17.7 16 | 1.17
nasasrb 8.6 8 8.7 16 | 1.01
stomach 8.5 8 9.5 16 | 1.12
torsol 14.1 8 13.4 16 | 0.95
twotone 2.8 16 2.9 16 | 1.05
dense 203.2 512 2354 512 | 1.16
dds15 19.0 64 19.5 64 | 1.03
matrix181 85.9 512 82.1 256 | 0.96

SuperLU_DIST implementation, which is significantly slower on
256 cores, enjoys a performance improvement scaling to 512 cores.
As a result, the SuperLU_DIST implementation is faster than the
Tarragon implementation. Overall, on the large matrices, the Tar-
ragon implementation achieves a 1.05 average speedup over the
SuperLU_DIST implementation.

While Tarragon achieves overlap and meets the performance of the
SuperLU_DIST implementation, which is also overlapping com-
munication with computation, the potential of applying Tarragon to
sparse LU factorization is not completely expressed. In particular,
the data decomposition and mapping imposed on Tarragon limits its
ability to execute one process per shared memory node and to ex-
ecute fine-grained tasks. A finer decomposition would create more
opportunities for scheduling tasks adapting to communication de-
lays and achieving better overlap. Future research should explore
ways to enable the conditions that are most favorable to Tarragon,
starting from the symbolic factorization.

4. CONCLUSIONS

Tarragon is a programming model that supports latency-hiding ap-
plications in scientific computing. Tarragon introduces a novel
task graph abstraction that enables the programmer to express par-
allelism and data dependencies, and that shields the programmer
from the complexity of communication, threading, and schedul-
ing details. The task graph and its attributes create a separation
of structural and correctness concerns from performance concerns.
In addition, by virtue of its data-driven execution model, Tarragon
automatically overlaps communication with computation.

The results in the application studies demonstrate Tarragon’s abil-
ity to achieve high performance and to realize overlap. In all of
the applications, the Tarragon implementation meets or exceeds
the performance of the corresponding overlapping MPI reference
most of the times. In addition, even when split-phase coding affects
the memory access pattern and negates the performance improve-
ment due to overlap, Tarragon supports overlapping algorithms that
preserve locality. For example, results with the Finite-Difference
solver show that the MPI overlapping version suffers a performance
loss compared to the non-overlapping MPI version, whereas the
Tarragon version exceeds the performance of the non-overlapping
MPI version owing to overlap and good locality.

The results of the sequence alignment application demonstrate that
the Tarragon version achieves overlap and that its performance is
maximized by an appropriate scheduling policy. While Tarragon
always achieves overlap, default scheduling policies might cause
execution to diverge from the critical path. However, with graph
analysis and prioritization users can identify and establish the most
appropriate scheduling policies. These results demonstrate that
graph-metadata can be used to tune performance without affecting
correctness of execution.

In conclusion, this work demonstrates that data-driven execution
coupled with metadata abstractions support latency tolerance. In
addition, Tarragon’s programming model supports performance op-
timization techniques that are decoupled from the algorithmic for-
mulation and the control flow of the application code; while en-
abling performance tuning, the resulting separation of concerns be-
tween performance and correctness promotes performance porta-
bility.

4.1 Future Research Directions

The explicit task graph representation used in Tarragon lends itself
to analysis-driven performance optimizations. For example, graph
analysis can suggest a task redistribution that minimizes inter-node
communication and hence the overall communication cost. Using
aricher set of metadata, perhaps collected partly by the application
and partly by the run-time system, offers promise for even more
complex optimizations. Load balancing is such an example; if the
graph is annotated by the run-time system with measured load in-
formation, or by the application with expected load information,
graph analysis can determine the optimal workload distribution.

Tarragon can be extended to support clusters of accelerators (i.e.
GPUs), an area in which communication latencies are a major per-
formance bottleneck. The idea of supporting hybrid code that ex-
ecutes on clusters of multicore nodes with accelerators appears to
be promising in a context in which metadata can support dynami-
cally tuned scheduling. Future research should also focus on graph
analysis and metadata annotation as a way for defining scheduling



policies to optimize execution on clusters of accelerators.

Tarragon mostly delegates productivity concerns to library exten-
sions. However, the use of libraries in refactoring and porting exist-
ing code bases to emerging architectures still requires some degree
of redevelopment. A promising approach in refactoring existing
code is to use automatic translation tools [22]. To this end, auto-
matic translation to apply transformations and optimize MPI code
is an active area of research, including an effort for translating MPI
code to Tarragon code.
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