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Abstract— We present Bamboo, a custom source-to-source
translator that transforms MPI C source into a data-driven
form that automatically overlaps communication with available
computation. Running on up to 98304 processors of NERSC’s
Hopper system, we observe that Bamboo’s overlap capability
speeds up MPI implementations of a 3D Jacobi iterative solver
and Cannon’s matrix multiplication. Bamboo’s generated code
meets or exceeds the performance of hand optimized MPI, which
includes split-phase coding, the method classically employed
to hide communication. We achieved our results with only
modest amounts of programmer annotation and no intrusive
reprogramming of the original application source.

I. INTRODUCTION

Applications running on exascale computers will invest
heavily in optimizations that reduce data motion costs, includ-
ing techniques to overlap communication with computation.
Since present day compiler technology cannot perform the
required optimizations, the task of masking communication
delays entails significant, intrusive performance programming,
challenging even the expert programmer. Moreover, with no
assurance that current software techniques will continue to
be effective in the face of rapid technological evolution,
performance robustness will be troublesome.

In order to achieve expected performance levels at the
Exascale, existing code bases, rooted in Bulk Synchronous
Parallelism (BSP) [34], and authored with the Message Passing
Interface (MPI) [26], would require extensive modification.

In this paper, we present Bamboo, a source-to-source trans-
lator that transforms an MPI program into a semantically
equivalent task precedence graph formulation, which automati-
cally masks communication with available computation. Bam-
boo re-engineers MPI code to run as a data-driven program
(like coarse-grain dataflow [2]) running under the control of
runtime services which schedule tasks according to the flow of
data and the availability of processing resources. The run time
services rely on virtualization [20] to pipeline communication
and computation.

We validated Bamboo against two important application
motifs [12]: Jacobi’s method for solving Poisson’s equation in
3 dimensions (structured grid) and Cannon’s Matrix Multipli-
cation Algorithm (dense linear algebra). We ran on up to 98304

processor cores of NERSC’s Hopper system and demonstrated
that Bamboo-generated code improved performance by mask-
ing communication delays. Performance was competitive with
that of carefully optimized MPI source that was manually
restructured with classic split-phase coding. Indeed, Bamboo
avoids the need for classic split-phase code that complicates
communication tolerant applications. Whereas classic split-
phase code embeds the communication tolerance strategy into
the application, Bamboo factors the communication overlap
strategy out of the user’s code, improving code maintainability
and performance robustness.

Bamboo is a custom source-to-source translator that recog-
nizes MPI calls, in effect treating the MPI entries as primitive
language objects. We implemented the translator with the
ROSE compiler framework [29]. Though Bamboo relies on
programmer annotations to guide the transformation process,
our experience is that these annotations are intuitive and
modest in number.

We target MPI because it is the dominant means of building
parallel scalable applications. However, our approach is not
limited to MPI and also applies to other data motion libraries
such as GasNet [5]. More generally, our technique for treat-
ing MPI illustrates an approach for delivering an embedded
domain specific language, in which the methods of a library
API in effect become primitive language constructs.

The remainder of this paper is as follows. Sec. II introduces
the Bamboo programming model. Sec. III describes the data-
driven execution of the Bamboo’s generated code, including
the underlying runtime support. Sec. IV discusses the imple-
mentation of Bamboo. Sec. V presents performance results.
Sec. VI describes related work. Finally, Sec. VII concludes
the paper and discusses future work.

II. BAMBOO

Scalable applications are generally written under the SPMD
(Same Program Multiple Data) model, and implemented with
MPI [26]. MPI enables the application programmer to cater
optimizations that benefit performance to application heuris-
tics, in particular, involving data motion and locality. Such
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domain specific knowledge is difficult to capture via general-
purpose language constructs and associated compilation strate-
gies that are unaware of application and library semantics.
This observation motivates the design of Bamboo, which is a
custom translator tailored to the MPI interface.

Bamboo treats the API’s members as primitives in an em-
bedded domain specific language, reformulating the program
to mask communication delays while maintaining the heuristic
knowledge encoded via MPI. Bamboo uses knowledge about
the MPI API to interpret an MPI program as an encoding
of data and control dependencies among a partial ordering of
tasks comprising the application. Bamboo extracts data and
control dependencies from the pattern of MPI call sites and,
with the help of runtime support, constructs a task precedence
graph corresponding to a partial ordering of tasks.

Tasks run under the control of the Tarragon runtime library
[10], [9], [11], which executes a task graph using data-flow
like semantics [1], [15]. The dataflow model is appealing be-
cause it automatically masks data motion without programmer
intervention [4], [10], [19], [32], [9], [11].

Since static analysis is not sufficient to infer matching sends
and receives in a running program [28], Bamboo requires
some programmer annotation of the original MPI program.
In our opinion, these annotations impose a modest burden
on the programmer, compared to the traditional approach of
restructuring an application to hide communication via split-
phase coding.

A. A first Bamboo program

To illuminate our discussions about translation under Bam-
boo, we will use a simple motivating example: an iterative
finite difference method that uses Jacobi’s method to solve
Laplace’s equation in two dimensions. The left side of Fig. 1,
shows how the numerical kernel updates each point of a 2D
mesh with the average of four nearest neighbors along the
Manhattan directions. It uses an “old” and a “new” mesh,
swapping the meshes after each iteration.
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Fig. 1: Left: the 2D Jacobi stencil; right: 2D partitioning, showing data dependencies
involving ghost cells.

The MPI implementation partitions the meshes across pro-
cessors, introducing data dependencies among adjacent mesh
elements that straddle the boundaries between subproblems
assigned to different processors. To treat these data depen-
dencies we store copies of off-processor boundary values in
“ghost cells” (right side of Fig. 1), which we refresh after each
mesh sweep. This is shown in Fig. 2, an MPI program for the
Jacobi iteration, which includes Bamboo annotations. Since a
conventional compiler will ignore the annotations, the code in
Fig. 2 is also a legal MPI program. We next describe Bamboo’s
underlying programming model and its annotations.
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3) Communication directive: By definition, each execute
region consists of computation and communication. To
convert the semantics of a program from synchronous to
asynchronous, Bamboo may need to reorganize the commu-
nication order. Unfortunately, the communication part not
only consists of MPI primitives, which are recognizable
by Bamboo but also some small computations such as
data packing and unpacking. To separate these calculations
from the main computational part, we introduce the send
and receive pragmas. The programmer uses these pragmas
to group the MPI function calls such as MPI Send and
MPI Recv with the related calculations. The usages for these
communication pragmas are as follows.

1# pragma bamboo [ send | r e c e i v e ]

4) Optimization directive: This is an optional directive,
which comprises a set of flags to enable or disable op-
timizations. Although Bamboo applies many optimization
techniques, most of them are transparent to the user. Cur-
rently, Bamboo exposes an optimization called buffer reuse
to reduce the overhead of allocating and destroying tem-
porary buffer for active messages. This technique (applied
by default) is helpful if each processor keeps sending and
receiving messages that have the same sizes. However,
inappropriate uses of this optimization may slightly slow
down the peformance. Thus, the user can annotate the flag
NO BUFFER REUSE to disable it. Generally, the syntax
for the optimize directive is as follows.

1# pragma bamboo o p t i m i z e (OPT FLAG ( argument ) ∗)+

Tab. I summarizes the set of Bamboo directives. The
dimension directive is placed only once in the whole pro-
gram. In each execute region, the execute and optimize
directives appear at most once, and the communication
directive usually appears twice (one send and one receive).
As a result, the number of directives needed to instrument
is usually equal to 1 + 4 * numberOfExecuteRegions.

Dimension Execute Communication Optimization
#pragma bamboo
dimension dim

#pragma bamboo
execute (clause)∗

#pragma bamboo
[send|receive]

#pragma bamboo
optimize(clause)+

dim: The number
of dimensions of
the task grid

clause: connector
name (arg)∗

clause: optimiza-
tion name (arg)∗

Table I: Bamboo directives.

C. Example: putting it all together

Fig. 5 presents a complete example of how to annotate an
MPI implementation of the 2D Jacobi application described
in Sec. II. On line 4, we specify ‘2’ for the dimension
directive since we utilize a 2D processor grid. Next, the
outer-most for loop on line 6 is placed under the execute
directive because it holds communication primitives. We use
NearestNeighbor as an argument for the execute directive

because each process exchanges data with four nearest
neighbors. A single send pragma on line 7 is used to
group 4 MPI Isend invocations with the data packing code.
Similarly, the receive pragma on line 11 groups 4 MPI Irecv
with the data unpacking code.

It’s easy to see that no code reorganization is needed
from the programmer. Therefore, this is a legal MPI program
since a compiler other than Bamboo will simply ignore the
annotations. The number of pragmas added into the code is
4, which is negligible.

1 M P I I n i t (& argc , &argv ) ;
2 MPI Comm rank(&my rank , MPI COMM WORLD) ;
3 MPI Comm size(&numprocs , MPI COMM WORLD) ;
4 Compute p r o c e s s I D of l e f t / r i g h t / up / down
5 A l l o c a t e U, V, S e n d G h o s t c e l l s , R e c v G h o s t c e l l s
6 # pragma bamboo o l a p
7 f o r ( i t =0 ; i t <n u m i t e r a t i o n s ; i t ++){
8 # pragma bamboo send{
9 pack boundary v a l u e s t o message B u f f e r

10 MPI Isend ( S e n d G h o s t c e l l s ) t o l e f t / r i g h t / up / down
11 }
12 # pragma bamboo r e c e i v e {
13 MPI Recv ( R e c v G h o s t c e l l s ) from l e f t / r i g h t / up / down
14 unpack incoming d a t a t o g h o s t c e l l s
15 }
16 MPI Wai ta l l ( ) ;
17 f o r ( j =1 ; j < N/ numprocs Y −2; j ++)
18 f o r ( i =1 ; i < N/ numprocs X −2; i ++)
19 V( j , i ) = c∗(U( j , i +1)+U( j , i −1)+U( j +1 , i ) +U( j −1, i ) ) ;
20 swap (U, V) ;
21 }
22 f r e e U, V, S e n d G h o s t c e l l s , R e c v G h o s t c e l l s
23 M P I F i n a l i z e ( )
24}

Figure 5: Annotated MPI program for 2DJacobi. Code
order is maintained, and pragmas are ignored by compilers.

IV. IMPLEMENTATION

A. The Bamboo translation framework

We use the ROSE compiler infrastructure to implement
Bamboo [9]. ROSE comprises various frontends, a middle
end, and backends. The framework to build Bamboo is
shown in Fig. 6. Bamboo uses EDG front end to parse
C++ source. This front end generates an Intermediate Rep-
resentation (IR) called Abstract Syntax Tree (AST). Since
EDG considers MPI as normal C++, we build a custom
module sitting between the front and middle ends to extract
information about the parameters used in MPI functions.
Then, the main modules of Bamboo which are built on
top of the ROSE’s middle end modify IR to create a new
form that accepts Tarragon. In particular, the annotation
handler extracts information from the annotations as well
as their corresponding locations in the IR; the analyzer and
transformer modify the IR in both syntax and semantics
to adopt the Tarragon model; the optimizer applies various
optimization techniques to improve the quality of the trans-
formed IR. Finally, the backend completes the translation
process by converting the IR back to source code.
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Fig. 2: Annotated MPI program for 2DJacobi. Some code has been omitted for the
purposes of clarity. To save space, we employ non-standard C syntax for send and receive
regions: an opening curly brace appears on the same line as the corresponding pragma.

B. The Bamboo Programming Model

Starting from an MPI program, Bamboo generates an equiv-
alent, meaning-preserving task precedence graph, which we
will refer to as a task graph from now on. This program runs
under the control of runtime services, which process the graph
according to dataflow semantics. In order to correctly interpret
MPI program execution in terms of a task graph, Bamboo
requires some additional knowledge about the input source,
that comes in the form of programmer annotations.

A Bamboo program is a legal MPI program, augmented with
one or more olap-regions. An olap-region is a section of code
containing communication to be overlapped with computation,
both located within the same olap-region. Lines 6-21 in Fig. 2
show an example of an olap-region. Bamboo can recognize
opportunities to overlap communication with computation
within olap-regions only. It preserves the execution order of
olap-regions, which run sequentially, one after the other.

Each olap-region contains at least 2 communication blocks,
plus a single computational block that depends upon the
completion of communication. The computational block is
optional and may contain other olap-regions. The common
case is for computational blocks to be present, as in the
applications presented in this paper. There are two kinds
of communication blocks: send and receive. Communication
blocks specify a partial ordering of communication operations
at the granularity of a block, including associated statements
that set up arguments for the communication routines, e.g.
establish a destination process, pack and unpack message
buffers. While the statements within each block are executed
in order, the totality of the statements contained within all
the send blocks are independent of the totality of statements
contained within all the receive blocks. This partial ordering
enables Bamboo to reorder send and receive blocks. However,
Bamboo will not reorder blocks of the same type.

Bamboo currently handles 6 fundamental message passing
primitives inside communication regions: blocking send and



receive (Send and Recv), asynchronous variants (iSend and
iRecv) and synchronization (Wait and Waitall). A send block
may contain Sends only. In most cases, a receive block will
contain Recvs only, except for the following situation. If a Send
has a read after write dependence on a prior Recv, then it must
reside within an appropriate receive block, either the same
block as the Recv, or a later one. This ensures that the two
calls will not be incorrectly reordered by Bamboo. Conversely,
if a Recv has an anti-dependence on a prior Send, it appears
that Bamboo’s reordering could give rise to incorrect code.
However, because Bamboo treats each Send with a temporary
buffer, it effectively renames the Send’s buffer, and we can
safely place the Recv and Send within respective receive and
send blocks. Wait and Waitall specify synchronization points;
their semantics are preserved by Bamboo. We note that the
above restrictions do not rule out the expression of certain
communication patterns. Rather, they provide a methodology,
that is, guidelines for inserting Bamboo annotations that en-
sures code correctness.

Revisiting the code in Fig. 2, a single send pragma at line
(8) groups four MPI Isend invocations together. The iSend() at
(10) consumes the data produced by code at (9) that linearizes
data into a buffer. Similarly, the receive pragma (12) groups
four MPI Recv calls. The unpacking code inside the receive
block at (14) consumes data delivered by the Recv() at (13).
By grouping the four iSends and four Recvs into a send and a
receive block, respectively, the user informs Bamboo that the
sending and the receiving of ghost cells are two independent
activities. Once the two communication blocks complete, the
computations to update the local mesh at lines (17)-(19) may
execute.

C. Basic directives

Programmer annotations are a powerful means of guiding
translation and effect a tradeoff between translator complexity
and the application programmer’s ease-of-use. Bamboo pro-
vides two kinds of directives. The first kind is required in all
applications, and treats overlap regions and communication
blocks as described previously. We call these “basic direc-
tives.” All Bamboo directives begin with #pragma bamboo,
followed by a directive name and any clauses associated
with the directive. The syntax for the olap-region and the
communication block directives are as follows, where we use
regular expression syntax to specify alternatives.

1# pragma bamboo o l a p
2# pragma bamboo [ send | r e c e i v e ]

Directives of the second kind, called “optimizations,” spec-
ify optimizations that may or may not be needed in all
programs, though highly scalable programs will generally
require them. Since the optimization directives require some
knowledge of Bamboo’s underlying data-driven execution
model currently implemented by Tarragon, we will defer their
discussion to §III-B, after we have discussed that model.

III. DATA-DRIVEN EXECUTION

A. Execution model

Bamboo generates source code to produce a new program
represented as a task graph that runs under a data-flow like
execution model. This program relies on a task graph library,
Tarragon, to define, manage, and execute task precedence
graphs, which are objects of type TaskGraph. Bamboo expects
the task graph library to export this abstract base class,
and generates concrete instances as needed. The nodes of
a TaskGraph correspond to tasks to be executed, which are
objects of type Task. The edges correspond to data depen-
dencies among tasks. The taskgraph library’s runtime system
interprets these dependencies as communication channels and
tasks communicate via active messages.

Each MPI process will be effectively transformed into a set
of tasks that are executed by a group of worker threads. The
library supports task execution via one or more service threads,
including scheduling. In order to improve the success of hiding
latency, we create more tasks than processing cores; as noted
by others, virtualization is important in hiding latency [21],
[32], [33]. Worker threads run to completion but the tasks
do not. The combination of task virtualization and run to
completion behavior requires that we take measures to avoid
deadlock. To this end, a task does not explicitly wait on
communication. The effect is to control when data becomes
visible to the task.

The underlying execution model of Bamboo is like dataflow,
but with the provision for task state. Tasks will generally alter-
nate between the running and suspended states, for example, in
an iterative method. When a task finishes computing, it moves
data along output edges and then it suspends, at which point
it is waiting on arriving data.1 The runtime services recognize
task state and will swap in a runnable task, which has met the
conditions of its firing rule. A task’s firing rule is simple: the
task becomes runnable once it receives all required messages.

When a task runs-or becomes runnable-all its input data are
guaranteed to be available. Any newly-arriving data will not
be visible to the task until after it has suspended; the task has
received all the data it needs to run, and any newly arriving
data will be visible the next time the task runs. The resultant
delays in data visibility are fundamentally different in a task
graph program and an MPI program. To handle these semantic
differences Bamboo employs code motion transformations
that will be described in §IV-B.

B. Communication Layout Optimization

Although the directives discussed in §II-C are sufficient
to begin using Bamboo, one more is needed to conserve
storage consumed by data structures that are internal to the
task graph’s runtime system.

In order to transmit messages between tasks, Bamboo’s
runtime system relies on the task mapping table, a table of
descriptors describing the edges that connect the tasks in a

1At some point the task completes. When all tasks in a task graph complete,
the task graph invocation completes and a new invocation may begin.



taskgraph. This information is determined from the commu-
nication structure encoded in the pattern of message passing
calls appearing in the application. However, static analysis
is insufficient to solve the general case [16]. Bronevetsky
reported a solution for certain kinds of geometries and when
there is only blocking communication [6].

By default, Bamboo will conservatively generate an all-to-
all task mapping table, such that each task has a channel to
every other task. This expensive solution will not scale, since
the aggregate size of the mapping table grows quadratically
in the number of tasks. However, in practice, communication
structures are sparse. For example, in collectives that employ
spanning tree like algorithms, the number of mapping table
entries per task grows as the log of the number of tasks. To
this end, Bamboo provides a pragma to specify a task graph’s
communication structure, which conserves space consumed
by the mapping table. Like Bronevetsky’s solution, Bamboo
frames the kinds of geometries it will accept, but it accepts
non-blocking communication.

To enable Bamboo to generate a sparse task mapping table,
we include support for communication layouts. These layouts
avoid unacceptable growth in the mapping table, which is
filled with only those entries required to carry out a specified
communication pattern. Currently, Bamboo defines a small
set of pre-defined layouts including various nearest neighbor
layouts. It also provides base classes for users to quickly
generate their own layouts.

In order to process the layout information, Bamboo needs to
know the number of spatial dimensions in which to embed the
layout, the rank of the underlying virtualized task geometry.
We refer to this geometry as the embedding geometry. It is not
necessary for Bamboo to know the bounds of the embedding
geometry, as this information is specified when we run the
generated program, and hence determined at runtime.

Since Bamboo cannot currently infer the the number of
dimensions in the embedding geometry we provide the dimen-
sion directive to specify the value. The directive must appear
exactly once in the program, prior to the first olap region
pragma. The syntax for specifying the number of dimensions
of the embedding geometry and a communication layout are
as follows, where we use regular expression syntax to specify
repeated or optional parts.

1# pragma bamboo d imens ion NumProcGeomDims
2# pragma bamboo o l a p ( l a y o u t name ( a r g s )∗ )∗

For example, in the 3D Jacobi method, the annotations for
a 2D data decomposition in the Y and Z dimensions are as
follows, where NN is a nearest neighbor layout, pre-defined
by Bamboo.

1# pragma bamboo d imens ion 2
2# pragma bamboo o l a p l a y o u t NN Y l a y o u t NN Z

IV. IMPLEMENTATION

A. The Bamboo translation framework

Fig. 3 shows the block diagram of Bamboo, which is
divided into a front-end (parser), a middle-end and a back-

end. We used the ROSE compiler infrastructure to implement
Bamboo [29], which includes the EDG front-end used to parse
standard C source. This front-end generates an Intermediate
Representation (IR), which is an in-memory Abstract Syntax
Tree (AST). Since EDG considers the MPI calls as ordinary
C function calls, we built a custom module sitting between
the front and middle ends to extract information about the
parameters passed to MPI functions. The four main modules
of Bamboo built on top of ROSE’s middle-end modify the IR
to create a new form that conforms to the Tarragon API. The
annotation handler extracts information from each Bamboo
directive along with the corresponding location within the
IR; the analyzer and transformer modify the IR to conform
to the Tarragon model and the optimizer applies various
transformations to improve the quality of the generated source
code. Finally, the back-end completes the translation process
by converting the IR back to source code.

Though the Bamboo translator encompasses all 3 sections,
our effort was concentrated on the custom middle-end which
is the focus of this section.
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Fig. 3: The Bamboo translation framework.

B. MPI call reordering

To generate correct Tarragon code, Bamboo may need to
reorder certain MPI function calls. This is a side effect of
Tarragon semantics discussed previously. If a task is currently
not suspended, it will be unable to receive messages via the
message handler (vinject()) until the next time it is suspended.
The left side of Tab. I shows a common pattern used in
MPI applications that must be restructured by Bamboo. The
send issued by a process matches up with the receive of
the another process in the same iteration. However, a task
is runnable only when all necessary data is available. If we
place the corresponding send within the same iteration as the
corresponding receive, data sent in one iteration will not be
received until the next. But, the algorithm needs to receive
data within the same iteration.

To cope with this timing problem, Bamboo reorders the
send, advancing it in time so that the sending and receiving
activities reside in different iterations. Bamboo will set up a
pipeline, replicating the call to send to the front of, and outside,
the iteration loop. It also migrates the existing call to the end



Before reordering After reordering

1 f o r ( i =1 ; i<=n I t e r s ; i ++){
2 Rece ive
3 Send
4 Compute
5 }

1 Send
2 f o r ( i =1 ; i<=n I t e r s ; ) {
3 Rece ive
4 Compute
5 i ++
6 i f ( i<=n i t e r s )
7 Send
8 }

TABLE I: Left: a typical MPI program that requires code reordering. Right: the same
code with send reordered.

of the loop body, adding an appropriate guard derived from the
loop iteration control logic. After reordering, the transformed
code appears as shown in the right side of Tab. I. The send
and receive now reside in different iterations, preserving the
meaning of the original code.

C. Code inlining and outlining

If a procedure other than main() directly or indirectly
invokes MPI calls, Bamboo registers it as an MPI-invoking
procedure. Bamboo will subsequently inline all MPI-invoking
procedures from the lowest to the highest calling levels.
The inlining process is transparent to the user and does
not require any annotation. Though the ROSE infrastructure
supports inter-procedural analysis, we prefer inlining, since
it is more accurate. Inlining exposes the calling context to
the procedure’s body and the procedure’s side effect on the
caller. Moreover, since Bamboo inlines MPI-invoking proce-
dures only, the amount of code requiring inlining is small.
Our inlining strategy currently does not support recursive
procedures.

The Tarragon API–which is the target of Bamboo–is a con-
tract between the runtime system and the translator. Tarragon
defines an abstract class called Task. Bamboo will derive
concrete Task class(es) from this abstract class implementing
(overriding) the three methods defined by Task: a firing rule,
vinject(), the task’s computations, vexecute() and the task’s
initialization, vinit(). These methods are generated by Bamboo
automatically, and are derived from the input source code. All
are invoked via callbacks made by the task graph Runtime
System (RTS) and are never invoked directly from application
code. Vinit() generally executes once per task construction, but
vexecute() may execute multiple times.

After inlining, Bamboo outlines code to the vinit(), vexe-
cute() and vinject() methods, which are required to implement
a concrete instance of Task. Bamboo splits the code into
regions, with the analysis guided by Bamboo pragmas. Once
it has outlined the code, Bamboo generates additional code to
create and execute the TaskGraph.

D. MPI call translation

Bamboo translates MPI function calls to their Tarragon
equivalents. The calls to MPI Init and MPI Finalize are
handled trivially, and will not be discussed.

1) MPI Comm rank and MPI Comm size: These routines
return the rank of a process and the total number of MPI
processes. Since we virtualize the MPI processes into Tarragon
tasks, Bamboo will take care of the mapping from MPI ranks

to Tarragon task IDs by rewriting the calls MPI Comm rank()
and MPI Comm size() to corresponding Tarragon calls that
return the task ID and number of tasks, respectively.

2) MPI point-to-point communication primitives: Bamboo
currently supports the following 6 point-to-point communica-
tion functions: MPI Send, MPI Isend, MPI Recv, MPI Irecv,
MPI Wait, and MPI Waitall.

MPI Send and MPI Isend are translated to an invocation
of the put() method, which is defined by Task. Put() is the
sole data motion primitive defined by the task graph library
and is like an active message.2 Since put() is asynchronous,
both forms of send differ only in terms of the time that the
sending buffer can be safely overwritten. Bamboo copies the
outgoing send buffer when issuing a put(), so both routines
are effectively equivalent.

MPI Recv and MPI Irecv. When Bamboo encounters a
blocking Recv, it incorporates the effect of that call into the
task firing rule (defined in vinject()), together with any condi-
tional statements connected with the receive, including induc-
tion variable tests of enclosing loop headers. However, a non-
blocking, asynchronous MPI Irecv does not require program
control flow to block until either MPI Wait or MPI Waitall
are invoked. Thus, Bamboo produces the firing rule when it
encounters a corresponding MPI Wait or MPI Waitall.

MPI Wait and MPI Waitall. When Bamboo locates a non-
blocking, asynchronous receive, i.e. MPI Irecv, it will then
look for a corresponding MPI Wait or MPI Waitall, and
incorporate any conditional statement associated with the
synchronization call when generating the Task firing rule. If
MPI Wait and MPI Waitall correspond to an asynchronous
MPI ISend, no code needs to be generated; due to data
buffering performed on the behalf of put(), there is no need
to wait for a send to complete and we can safely remove any
synchronization on that send.

V. EXPERIMENTAL EVALUATION

A. Applications and Testbed

We validated Bamboo against applications from two well
known HPC computational motifs: a 3D Jacobi iterative solver
(which we will refer to as 3D Jacobi) and dense matrix
multiplication. For the latter, we implemented not only the
classic Cannon algorithm [35], but also the communication
avoiding variant, which targets small matrices [31].

Our computational testbed was Hopper, a Cray XE6 system
located at the National Energy Research Scientific Computing
Center (NERSC). Hopper’s 153,216 cores are packaged as
dual socket 12-core AMD MagnyCours 2.1GHz processors,
which are further organized into two hex-core NUMA nodes.
The 24-core Cray nodes are interconnected via Gemini in-
terconnect (a 3D toroidal topology) and we used nodes with
32GB of memory. All source code was compiled using the CC
wrapper, with the following optimization options: -O3 -ffast-
math. This wrapper is a front end to MPI and we set it up to

2The vinject() method is the handler; a call to put() will trigger a callback
to vinject() at the destination. The callback is initiated by the runtime system,
which watches for incoming messages.



use the GNU compiler suite (GCC 4.6.1). High performance
matrix multiply (dgemm) was supplied by ACML version
4.4.0.

B. 3D Jacobi iterative solver

1) Application and variant descriptions: 3D Jacobi solves
Poisson’s equation in three dimensions ∇2u = f , subject
to Dirichlet boundary conditions. The solver uses Jacobi’s
method with a 7-point central difference scheme that updates
each point of the grid with the average of the six nearest
neighbor values in the Manhattan directions. In order to make
fair performance comparisons, we compared several variants
of 3D Jacobi. All variants share the same numerical kernels
and the variants using OpenMP all used the same OpenMP
annotations to parallelize the loops. We blocked the 3D Jacobi
kernel for cache along the Y and Z-axes, the non-contiguous
axes that correspond to the two outer most loops of mesh
sweep loop nest. We determined experimentally that a 4x8
block size was optimal.

The first variant, MPI-basic, is the simplest. It does not
overlap communication with computation and is the starting
point for the remaining variants.

The second variant, MPI-olap, has been manually restruc-
tured to employ split phase coding to overlap communication
with computation. It employs a hierarchical data decomposi-
tion, subdividing the mesh assigned to each core into 8 equal
parts using a 3D 2× 2× 2 geometry. MPI-olap sets up a
pipeline; within the outer iteration it sweeps one-half of the 8
sub-problems while communicating ghost cells for the others.

The third variant, MPI+OMP, employs a hybrid execu-
tion model running 1 MPI process per NUMA node, each
unfolding a team of OpenMP threads to perform the mesh
sweep over the work assigned to the 6 cores of the node.
This hybrid variant uses just a fraction, 1/T, of the MPI
processes used in the pure MPI variant, where T is the
number of OpenMP threads per node. Under these conditions
communication occurs at the NUMA node level: the single
master thread exchanges ghost cells between nodes leaving all
but one core idle during communication. NERSC recommends
this variant over MPI-basic, as it saves memory.

The fourth variant, MPI+OMP-olap, combines the overlap-
ping technique used in the second variant with the hybrid
model used in the third. This variant takes advantage of
both techniques, but hierarchical control flow reduces the
effectiveness of overlap which occurs at the NUMA node level.

The fifth and the sixth variants, Bamboo-basic and Bam-
boo+OMP, were obtained by passing the MPI-basic and MPI-
OMP variants, respectively, through the Bamboo translator.
These codes run in data-driven fashion under the control of
the task graph runtime system (Tarragon). The Bamboo anno-
tations used in 3D Jacobi are somewhat different from the 2D
Jacobi code previously shown in Fig. 2. We specify dimension
3 for the embedding geometry instead of dimension 2. We
also specify a communication layout: layout NearestNeighbor
to match the 3D decomposition and the nearest neighbor task
connection.

We also report performance for MPI-nocomm. This is not a
true variant and is the result of turning off all message passing
activity in MPI-basic. We use MPI-nocomm to establish an up-
per bound on performance, which we may or may not be able
to realize in practice. Since 3D Jacobi is a memory bandwidth-
bound application, the performance of MPI-nocomm is far
below the peak performance of the hardware.

2) Aprun configuration: All jobs were launched using the
aprun command. The pure MPI variants (MPI-basic and MPI-
olap) ran with 1 process per core, while the others ran with 1
process per NUMA node, each spawning an identical number
of OpenMP threads. Thus, the MPI variants were run with
the following aprun command line arguments -n P -N 24 -S
6, where P is the total number of cores and we run with 24
MPI processes per Hopper node (-N 24) further organized into
four groups of 6 processes per NUMA node (-S 6). The other
variants ran with one MPI process per NUMA node using
these aprun command line arguments: -n p6 -N 4 -S 1, where
p6 = P/6. For the hybrid variants using OpenMP (MPI+OMP,
MPI+OMP-olap and Bamboo+OMP), we specified -d 6 to
spawn 6 worker threads per NUMA node. For the Bamboo
variants of the pure MPI codes, the translator manages thread
spawning via Tarragon. It configured Tarragon to spawn 5
worker threads, each running on its own core, dedicating the
remaining core to a service thread. Lastly, we specified the -ss
option of aprun, which restricts each thread to use memory
nearest to its NUMA node, improving performance.

3) Results: We conducted a strong scaling study, main-
taining a fixed problem size as we increase the number of
processors. Strong scaling stresses communication overhead,
though we still have sufficient computation to overlap with
data motion (Unlike Cannon’s algorithm, discussed next,
where we were forced to employ weak scaling).

Fig. 4a compares the results with different variants of 3D
Jacobi. Notably, Bamboo uniformly improves performance of
both variants (MPI-basic and MPI+OMP) at all levels of par-
allelism. For example, on 96K (98034) cores, Bamboo-basic
realizes a ×1.27 speedup, hiding 52% of the communication
delay in MPI-basic. More generally, the speedups ranged from
1.07 to 1.27. With strong scaling, communication overhead
increases with the number of cores (from 13% to 41% over
the range of 12K to 96K cores), and this explains why the
performance increase delivered by Bamboo grows with the
number of cores. Since the kernel is blocked for cache in
all variants, we believe that most of the benefits come from
latency hiding. To gain insight into the performance benefits
of Bamboo, we next analyze the remaining two MPI variants.

The hybrid MPI+OMP variant demonstrates the benefits
of multithreading which is also enjoyed by the Bamboo
variants. Though this hybrid variant provides only a modest
improvement over MPI-basic on smaller numbers of cores,
it provides a large boost at 96K cores. We believe this is
due to reduced communication delays achieved by hybrid
MPI-thread execution at scale, which is also exhibited by
Bamboo. In our strong scaling study, messages are shrinking
from 192KB to 24KB as the number of cores increases from
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Fig. 4: 3D Jacobi. Grid size: 3072x3072x3072 double precision.

12228 to 98304. Since only 1 MPI process per NUMA-
node is communicating, MPI+OMP and Bamboo variants
aggregate the shorter messages into a smaller number of longer
messages, compared to 1 MPI process per core with the pure
MPI implementations. Since the network interface serializes
messages longer than the eager limit, it makes sense that
aggregation should benefit performance. However, why this
effect appears suddenly at only at 96K cores is as yet unclear,
and is currently under investigation. To eliminate effects due
to TLB misses, we experimented with Cray’s hugepages, but
without effect. We monitored L1 and L2 cache miss rates using
CrayPat, but could find no correlation. Unfortunately, L3 miss
rates were not available.

The Bamboo and hand optimized MPI-olap variants deliver
similar performance on up to 24K cores, but Bamboo’s advan-
tage rises sharply on 48K and 96K cores. We attribute the
sudden change to how Bamboo handles decomposition. MPI-
olap uses a hardwired scheme of 8 tasks per core, splitting
the mesh assigned a core along all 3 dimensions. Bamboo has
more flexibility than MPI-olap in selecting task geometry as it
can virtualize along any of the dimensions. We experimented
with many geometries and found that a virtualization factor of
2 tasks per core was optimal (Fig. 4(b).)

Bamboo-basic generally outperforms Bamboo+OMP since
the runtime services run independently on one core while they
have to share a core with an OpenMP thread in Bamboo+OMP.
This is revealed in Fig. 4(b), which also shows that the bene-
fits of communication-computation overlap in Bamboo+OMP
drop off more quickly than Bamboo-basic as we increase
the virtualization factor. Both variants benefit from modest
amounts of virtualization (2 tasks per core), which improves
the pipelining of communication and computation, but higher
levels of virtualization introduce increased scheduling costs,
overwhelming any improvements due to overlap.

C. Matrix Multiplication: Cannon’s algorithm

1) Application and variant descriptions: Cannon’s algo-
rithm computes the matrix product of two matrices C=A*B,
employing a square processor grid to partition the three
matrices. Each processor owns a portion of C. It systematically
rotates sub-blocks of A and B along processor rows and
columns in a sequence of

√
P−1 steps, where P is the number

of processors. At each step, after a processor receives the next
submatrix of A and B, it computes a partial matrix product to
update the C partition that it owns (C += A*B).

Fig. 5 shows the MPI-basic Cannon code annotated
with Bamboo pragmas. We introduce a new layout called
OneNeighborBackward (line 1) which establishes backward
nearest neighbor connections between tasks in the right-to-left
and down-to-up directions.

We also implemented an MPI-olap variant using a pipeline
strategy that employed split-phase coding, advancing the mes-
sage passing calls to enable overlap between the dgemm
computation in one step and the matrix rotation of the next,
which are independent.

Unlike Jacobi’s method, we did not use the MPI+OMP
variant. It provided little advantage on the large matrices
targeted by Cannon’s algorithm. On the other hand, MPI+OMP
was useful for the small matrices targeted by the 2.5D variant
of Cannon (Communication Avoiding), which we present in
the next section.

1 # pragma bamboo o l a p l a y o u t OneNeighborBackward X Y
2 dgemm (A, B , C) ;
3 f o r ( i n t s t e p =1; s t e p < s q r t ( n p r o c s ) ; s t e p ++){
4 # pragma bamboo r e c e i v e{
5 MPI Irecv ( rA from r i g h t ) ; MPI Irecv ( rB from down ) ; }
6 # pragma bamboo send {
7 MPI Send (A t o l e f t ) ; MPI Send (B t o up ) ; }
8 MPI Wai ta l l ( ) ;
9 swap (A, rA ) ; swap (B , rB ) ;

10 dgemm (A, B , C) ;
11 }

Fig. 5: Annotated code for submatrix rotation in Cannon’s algorithm.
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Fig. 6: 2D Cannon with large matrices.

2) Aprun configuration: Since Cannon’s algorithm requires
a square processor grid, we ran with a square number of
NUMA nodes, 4 processor cores on each node.3 To this end,
the MPI variants (MPI-basic and MPI-olap) were run with
the following command line arguments, where P is the total
number of cores: -n P -N 16 -S 4. For Jacobi 3D we ran
Bamboo in multi-threaded mode with one MPI process per
node and multiple worker threads per MPI process. However,
single threaded mode was significantly faster for a CPU-bound
application such as dense matrix multiplication, which runs
one MPI process per core, and one worker thread per MPI
process. Thus, we used same command line arguments as for
the MPI variants.

3) Results: For this application, we conducted a weak
scaling study. Since the application delivers a high fraction
of peak performance on a single core (88%), strong scaling is
of limited value. We used square matrices of size up to 128K
× 128K.

Fig. 6 shows the performance of Bamboo and MPI variants
on up to 16K processors. It can be seen that the communication
cost increases steadily as the processor count increases. In
particular, the cost increases from 17% on 1K processors to
41% on 16K processors. The reason is as follows. The number
of communication steps grows as

√
P . Since the wallclock

time spent in dgemm remains constant, and the size of the local
sub-matrices A and B grows as P 2/3, the communication to
computation ratio grows as P 1/6. In fact, the observed growth
in communication is a bit higher as we’ve ignored the increase
in message starts, which also grow as

√
P .

Under these conditions of growing communication costs,
Bamboo speeds up the MPI-basic variant from ×1.15 to
×1.42, bringing performance closer to the upper bound of
MPI-nocomm. To achieve these results, higher degrees of vir-
tualization (from 4 to 8) were required compared to 3D Jacobi
(2 in all cases). Fig. 6(b) shows the effect of virtualization on
performance. As the degree of virtualization increases, there
is a tradeoff between the benefit of overlap and the cost of
scheduling the more numerous tasks, which are transmitting

3We used 4 instead of 6 cores as the result of an early decision in conducting
our scaling studies. The decision does not reflect any limitation of Bamboo
as we ran on 6 cores per node with 3D Jacobi.

shorter and shorter messages. In 2D Cannon, the messages
are long, e.g. 21MB on 1K processors and 8MB on 16K.
Thus, we can continue to increase the virtualization factor,
improving overlap without penalizing message bandwidth. By
comparison, in the 3D Jacobi application the messages are
much shorter (by over an order of magnitude), and there is
less room to increase the virtualization factor. The cost of the
transmitting the shorter, more numerous messages eventually
overcomes the benefit of overlap.

The MPI-olap variant works well on up to 4096 processors,
but at 16K cores it cannot compete with Bamboo. We believe
that this is due to the ability of Bamboo to use virtualization
to better pipeline the communication.

D. Matrix Multiplication: Communication-optimal algorithm

1) Application and variant descriptions: We have just
demonstrated that Bamboo is able to mask communication in
multiplying large matrices using Cannon’s algorithm. We next
look at the 2.5D “communication avoiding” matrix multiplica-
tion algorithm [31], which targets small matrices. Small matrix
products arise, for example, in electronic structure calculations
(e.g. ab-initio molecular dynamics using planewave bases [25],
[8]), a planned target of Bamboo. The 2.5D algorithm is
interesting for two reasons. First, small matrix products incur
high communication costs relative to computation, especially
at large scales, which stress Bamboo’s ability to mask com-
munication delays. Second, the 2.5D algorithm introduces
two new communication patterns: broadcast and reduction.
Supporting these new patterns broadens the scope of Bamboo.

At a high level, the 2.5D algorithm generalizes the tra-
ditional 2D Cannon algorithm by employing an additional
processor dimension to replicate the 2D processor grid. The
degree of replication is controlled by a replication factor called
c. When c=1, we regress to 2D Cannon. When c = cmax =
P 1/3, we elide the shifting communication pattern and employ
only broadcast and reduction. This algorithm is referred to
as the 3D algorithm. The sweet spot for c falls somewhere
between 1 and cmax, hence the name “2.5D algorithm.”

As in the 2D algorithm, the 2.5D algorithm shifts data along
the X and Y axes. In addition, the 2.5D algorithm performs
a broadcast and a reduction along the Z dimension. Since



broadcast and reduction are closely related, we show only
the annotated code of the broadcast routine, in Fig. 7. The
dimension pragma (line 1) appears only once in the whole
program. Whereas the 2D algorithm uses a 2D processor
geometry, the 2.5D algorithm uses a 3D processor geometry.
Broadcast is based on a min heap structure [13] constructed
from the processors along the Z dimension. A min heap is
a complete binary tree in which the parent’s key (processor
ID in our case) is strictly smaller than those of its children.
The MinHeap layout annotation takes just one argument: the
dimension along which we construct the MinHeap (Z). The
broadcast algorithm has 2 communication blocks: one receive
block and one send block. The receive block contains 1
Recv followed by 2 Sends. Since Bamboo will not reorder
sending and receiving activities within a communication block
it knows that the two Sends are dependent upon the completion
of the Recv. However, following previous discussions about
the independence of send and receive blocks, we infer from
inspection that our annotations specify that all three point-
to-point calls in the receive block are independent of all the
point-to-point calls in the send block.

1 # pragma bamboo d imens ion 3
2 # pragma bamboo o l a p l a y o u t MinHeap Z
3 {
4 # pragma bamboo send
5 {
6 i f ( r o o t & h a s L e f t C h i l d ) MPI Send (A/ B , l e f t C h i l d ) ;
7 i f ( r o o t & h a s R i g h t C h i l d ) MPI Send (A/ B , r i g h t C h i l d ) ;
8 }
9 # pragma bamboo r e c e i v e

10 {
11 i f ( ! r o o t & h a s p a r e n t ) MPI Recv (A/ B , p a r e n t ) ;
12 i f ( ! r o o t & h a s L e f t C h i l d ) MPI Send (A/ B , l e f t C h i l d ) ;
13 i f ( ! r o o t & h a s R i g h t C h i l d ) MPI Send (A/ B , r i g h t C h i l d ) ;
14 }
15 }

Fig. 7: Annotated code for the broadcast routine in the 2.5D Cannon’s algorithm.

Through experimentation, we observed that, with the small
matrices targeted by the 2.5D algorithm, the hybrid execution
model MPI+OMP yields higher performance than a “flat MPI”
implementation, which spawns only one MPI process per
core. Therefore, we used the following 3 variants: MPI+OMP,
MPI+OMP-olap, and Bamboo+OMP. All variants perform
communication at the node level, using the OpenMP inter-
face of the ACML math library to multiply the submatrices
(dgemm). MPI+OMP is the basic MPI implementation without
any overlap. MPI+OMP-olap is the optimized variant of
MPI+OMP that uses the pipeline strategy discussed previously
for the 2D algorithm. Bamboo+OMP is the result of passing
the annotated MPI+OMP variant through Bamboo. As with
the previous two applications, we also present results with
communication shut off in the basic variant, i.e. MPI+OMP-
nocomm, which uses the same code as MPI+OMP.

2) Aprun configuration: In the 2.5D algorithm the number
of processors P = 2cq2 for integers c and q. Thus, the number
of cores is a power of 2, and we used 4 cores per NUMA node.
All variants spawned MPI processes at the NUMA-node level
to take the advantage of node-level parallelism using OpenMP.

We ran all variants with the following aprun command line
arguments: -n p4 -N 4 -S 1 -d 4 -ss, where p4 = P/4. The
environment variable OMP NUM THREADS=4 in all runs.

3) Results: We conducted a weak scaling study on 4K, 8K,
16K and 32K processors. We chose problem sizes that enabled
us to demonstrate the algorithmic benefit of data replication.
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#Cores 4096 8192 16384 32768
MPI+OMP c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}
MPI+OMP-olap c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}
Bamboo+OMP c=2, VF =8 c=2, VF=4 c=2, VF=2 c=4, VF=2

TABLE II: The effects of replication and virtualization. MPI+OMP and MPI+OMP-olap
have limited options for c. The boldface values within the curly braces yield the highest
performance. Bamboo’s virtualization mechanism enables c to take on any power-of-two
so long as we adjust the virtualization factor appropriately. Thus, for Bamboo+OMP we
report performance for the combinations yielding the highest performance only.

Fig. 8 shows the results with the different variants. We mea-
sured the communication cost, which ranged from 35% to 61%
(wallclock time). Both Bamboo+OMP and MPI+OMP-olap
deliver the same speedup over the MPI+OMP variant on up to
8K processors. With 16K processors and more, Bamboo+OMP
overtakes MPI+OMP-olap. Although Bamboo+OMP is still
faster than the other variants on 32K cores, the speedup
provided by Bamboo+OMP has dropped. We believe this
behavior is the result of an interaction between the allowable
replication factor c, and the degree of virtualization.

To understand the interaction, we consult Tab. II, which
shows the values of c that maximize performance for the
different variants. Over the range of 8K, 16K and 32K cores,
the efficiency of the MPI+OMP variant suddenly drops at
16K cores but then increases again at 32K. This variation is
likely due to the effect of replication. Note that the 2.5D algo-
rithm requires that the first two dimensions of the processor
geometry be equal. For the two MPI variants (Tab. II), the
available values for the replication factor c are limited while
Bamboo+OMP has more options due to the flexibility offered
by virtualization. For example, on 8192 cores MPI+OMP and
MPI+OMP-olap can set c = 2 or c = 8, i.e. other values are
illegal. On 16K cores, c can be 1, 4 or 16 while on 32K
cores c can take on values of 2 or 8. For Bamboo+OMP,
performance depends not only on our choice of c but also on
the degree of virtualization. Thus, we choose a combination of



replication and virtualization that is optimal and cannot choose
these parameters independently.

We have demonstrated that Bamboo can improve the per-
formance of communication avoiding matrix multiplication
by overlapping communication with computation. Both tech-
niques play an important role in highly scalable computing,
where we must take into account a variety of performance
tradeoffs, some of them algorithmic.

VI. RELATED WORK

MPI/SMPSs [24] employs a translator and programmer
annotations to realize task parallelism at the function call
level using SMPSs [27]. Under this approach, the programmer
“taskifies” MPI calls, which may then run in parallel with com-
putation, hence hiding communication delays. The translator
generates a dataflow graph from information generated at run
time. The task parallelism interface works for any routine and
is not customized to MPI, though the scheduler is tuned to
handle MPI programs. By comparison, Bamboo uses static
analysis combined with domain-specific knowledge of the
MPI API, enabling it to realize optimizations specific to MPI.
For example, we can rewrite MPI collectives to reduce their
granularity in the FFT [3], improving overlap. By comparison,
MPI/SMPSs will taskify the monolithic collectives but is not
able to restructure the MPI calls.

Danalis et al. [14] implemented transformations that real-
ize communication-computation overlap in MPI collectives.
Shires et. al [30] presented a program flow representation of an
MPI program, which is useful in code optimization. Charm++
[21] supports virtualization and latency tolerance and includes
a compiler. Adaptive MPI [18], built on top of Charm++,
virtualizes MPI processes and supports communication over-
lap. When a thread blocks on an MPI call, it yields to another
thread. There is no explicit dataflow graph and the MPI source
is not manipulated. Bamboo transforms MPI source into an
explicit graph, which can be used to guide scheduling.

PLASMA [23] is a library for dense linear algebra and it
represents applications with a dataflow graph. To conserve
memory, it allocates only a portion of the graph at a time,
inhibiting global optimizations. Bamboo’s task graph library
provides for task state, which curbs task graph growth.

We used the ROSE source-to-source translator [29] to
develop Bamboo. ROSE is a member of the family of language
processors that support semantic-level optimizations including
Telescoping languages [22], [7] and Broadway [17]. Such
language processors are able to treat a library like MPI as
a domain specific language, in which the MPI entries may be
optimized as language intrinsics, embedded within an ordinary
language like C, C++, or Fortran. Embedded domain specific
languages are expected to play an important role in Exascale
computing.

VII. CONCLUSION AND FUTURE WORK

We have presented Bamboo, a translator to transform MPI
code into a form that tolerates latency automatically. We
demonstrated that Bamboo improved performance at scale on

two important application motifs: structured grid and dense
matrix linear algebra. We have validated our claim that, by
interpreting an MPI program in terms of data flow execu-
tion, we can overlap communication with computation and
thereby improve performance. Moreover, performance meets
or exceeds that of labor-intensive hand coding, at scale. Bam-
boo also improved performance of Communication Avoiding
matrix multiplication. The translated code not only avoids
communication, but tolerates what it cannot avoid. We believe
that this dual strategy will become more widespread as data
motion costs continue to grow.

Bamboo has some limitations, which we are currently ad-
dressing. First, it handles only the fundamental communication
primitives which cover a small subset of MPI. We are adding
support, for example, for communicators and for collectives.
We plan to translate collectives into their components, i.e.
point-to-point primitives, to take advantage of improved finer
grained pipelining. Second, we have validated Bamboo against
just two application motifs. In the future we plan to look new
motifs such as the Fast Fourier Transform that exhibit vastly
different communication patterns.

We implemented our approach with a custom source-to-
source translator, which in effect treats the MPI API as an
embedded domain specific language. Our translator, Bamboo,
is more than a means of hiding latency that avoids costly code
restructuring. It also serves as an example of the utility of
semantic level optimization against a well known library.
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